It is well known that the length of a beta-reduction sequence of a simply
typed lambda-term of order k can be huge; it is as large as k-fold exponential
in the size of the lambda-term in the worst case. We consider the following
relevant question about quantitative properties, instead of the worst case: how
many simply typed lambda-terms have very long reduction sequences? We provide a
partial answer to this question, by showing that asymptotically almost every
simply typed lambda-term of order k has a reduction sequence as long as
(k-1)-fold exponential in the term size, under the assumption that the arity of
functions and the number of variables that may occur in every subterm are
bounded above by a constant. To prove it, we have extended the infinite monkey
theorem for strings to a parametrized one for regular tree languages, which may
be of independent interest. The work has been motivated by quantitative
analysis of the complexity of higher-order model checking