Abstract

Let xx be a sequence taking values in a separable metric space and I\mathcal{I} be a generalized density ideal or an FσF_\sigma-ideal on the positive integers (in particular, I\mathcal{I} can be any Erd{\H o}s--Ulam ideal or any summable ideal). It is shown that the collection of subsequences of xx which preserve the set of I\mathcal{I}-cluster points of xx [respectively, I\mathcal{I}-limit points] is of second category if and only if the set of I\mathcal{I}-cluster points of xx [resp., I\mathcal{I}-limit points] coincides with the set of ordinary limit points of xx; moreover, in this case, it is comeager. In particular, it follows that the collection of subsequences of xx which preserve the set of ordinary limit points of xx is comeager.Comment: To appear in Topology Appl. arXiv admin note: substantial text overlap with arXiv:1711.0426

    Similar works