A central challenge for the scaling of quantum computing systems is the need
to control all qubits in the system without a large overhead. A solution for
this problem in classical computing comes in the form of so called crossbar
architectures. Recently we made a proposal for a large scale quantum
processor~[Li et al. arXiv:1711.03807 (2017)] to be implemented in silicon
quantum dots. This system features a crossbar control architecture which limits
parallel single qubit control, but allows the scheme to overcome control
scaling issues that form a major hurdle to large scale quantum computing
systems. In this work, we develop a language that makes it possible to easily
map quantum circuits to crossbar systems, taking into account their
architecture and control limitations. Using this language we show how to map
well known quantum error correction codes such as the planar surface and color
codes in this limited control setting with only a small overhead in time. We
analyze the logical error behavior of this surface code mapping for estimated
experimental parameters of the crossbar system and conclude that logical error
suppression to a level useful for real quantum computation is feasible.Comment: 29 + 9 pages, 13 figures, 9 tables, 8 algorithms and 3 big boxes.
Comments are welcom