A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the
effects of the charged weak current on the electron-ion magnetohydrodynamic
fluid are taken into account. The model incorporates in a systematic way the
role of the Fermi neutrino weak force in magnetized plasmas. A fast
neutrino-driven short wavelengths instability associated with the magnetosonic
wave is derived. Such an instability should play a central role in strongly
magnetized plasma as occurs in supernovae, where dense neutrino beams also
exist. In addition, in the case of nonlinear or high frequency waves, the
neutrino coupling is shown to be responsible for breaking the frozen-in
magnetic field lines condition even in infinite conductivity plasmas.
Simplified and ideal NMHD assumptions were adopted and analyzed in detail