We analysed the four-decades-long X-ray light curve of the low-luminosity
active galactic nucleus (LLAGN) NGC 7213 and discovered a
fast-rise-exponential-decay (FRED) pattern, i.e. the X-ray luminosity increased
by a factor of ≈4 within 200d, and then decreased exponentially with
an e-folding time ≈8116d (≈22.2 yr). For the theoretical
understanding of the observations, we examined three variability models
proposed in the literature: the thermal-viscous disc instability model, the
radiation pressure instability model, and the tidal disruption event (TDE)
model. We find that a delayed tidal disruption of a main-sequence star is most
favourable; either the thermal-viscous disk instability model or radiation
pressure instability model fails to explain some key properties observed, thus
we argue them unlikely.Comment: Accepted for publication in MNRAS, updated version after proof
correction