Individual heterogeneity is a key characteristic of many real-world systems,
from organisms to humans. However its role in determining the system's
collective dynamics is typically not well understood. Here we study how
individual heterogeneity impacts the system network dynamics by comparing
linking mechanisms that favor similar or dissimilar individuals. We find that
this heterogeneity-based evolution can drive explosive network behavior and
dictates how a polarized population moves toward consensus. Our model shows
good agreement with data from both biological and social science domains. We
conclude that individual heterogeneity likely plays a key role in the
collective development of real-world networks and communities, and cannot be
ignored.Comment: 6 pages, 4 figure