Cutaneous exposure to hypoxia does not affect skin perfusion in humans.

Abstract

Aim:\textbf{Aim:} Experiments have indicated that skin perfusion in mice is sensitive to reductions in environmental O2_2 availability. Specifically, a reduction in skin-surface PO2_2 attenuates transcutaneous O2_2 diffusion, and hence epidermal O2_2 supply. In response, epidermal HIF-1α\alpha expression increases and facilitates initial cutaneous vasoconstriction and subsequent nitric oxide-dependent vasodilation. Here, we investigated whether the same mechanism exists in humans. Methods:\textbf{Methods:} In a first experiment, eight males rested twice for 8 h in a hypobaric chamber. Once, barometric pressure was reduced by 50%, while systemic oxygenation was preserved by O2_2-enriched (42%) breathing gas (HypoxiaSkin_\text{Skin}), and once barometric pressure and inspired O2_2 fraction were normal (Control1_1). In a second experiment, nine males rested for 8 h with both forearms wrapped in plastic bags. O2_2 was expelled from one bag by nitrogen flushing (AnoxiaSkin_\text{Skin}), whereas the other bag was flushed with air (Control2_2). In both experiments, skin blood flux was assessed by laser Doppler on the dorsal forearm, and HIF-1α\alpha expression was determined by immunohistochemical staining in forearm skin biopsies. Results:\textbf{Results:} Skin blood flux during HypoxiaSkin_\text{Skin} and AnoxiaSkin_\text{Skin} remained similar to the corresponding Control trial (PP = 0.67 and PP = 0.81). Immunohistochemically stained epidermal HIF-1α\alpha was detected on 8.2 ± 6.1 and 5.3 ± 5.7% of the analysed area during HypoxiaSkin_\text{Skin} and Control1_1 (PP = 0.30) and on 2.3 ± 1.8 and 2.4 ± 1.8% during AnoxiaSkin_\text{Skin} and Control2_2 (PP = 0.90) respectively. Conclusion:\textbf{Conclusion:} Reductions in skin-surface PO2_2 do not affect skin perfusion in humans. The unchanged epidermal HIF-1α\alpha expression suggests that epidermal O2_2 homoeostasis was not disturbed by HypoxiaSkin_\text{Skin}/AnoxiaSkin_\text{Skin}, potentially due to compensatory increases in arterial O2_2 extraction.Gösta Fraenckel Foundatio

    Similar works