Exploring the potential of precision dairy tools

Abstract

Take Home Messages Precision Dairy Farming is the use of technologies to measure physiological, behavioral, and production indicators on individual animals to improve management strategies and farm performance. Many Precision Dairy Farming technologies, including daily milk yield recording, milk component monitoring, pedometers, automatic temperature recording devices, milk conductivity indicators, automatic estrus detection monitors, and daily body weight measurements, are already being utilized by dairy producers. Other theoretical Precision Dairy Farming technologies have been proposed to measure jaw movements, ruminal pH, reticular contractions, heart rate, animal positioning and activity, vaginal mucus electrical resistance, feeding behavior, lying behavior, odor, glucose, acoustics, progesterone, individual milk components, color (as an indicator of cleanliness), infrared udder surface temperatures, and respiration rates. The main objectives of Precision Dairy Farming are maximizing individual animal potential, early detection of disease, and minimizing the use of medication through preventive health measures. Perceived benefits of Precision Dairy Farming technologies include increased efficiency, reduced costs, improved product quality, minimized adverse environmental impacts, and improved animal health and well-being. Real time data used for monitoring animals may be incorporated into decision support systems designed to facilitate decision making for issues that require compilation of multiple sources of data. Technologies for physiological monitoring of dairy cows have great potential to supplement the observational activities of skilled herdspersons, which is especially critical as more cows are managed by fewer skilled workers. The economic implications of technology adoption must be explored further to increase adoption rates of Precision Dairy Farming technologies

    Similar works