Biosorption of Cadmium by Mangrove-Derived Cyanobacteria (Gloeocapsa sp ARKK3)

Abstract

Dried microbial biomass of Gloeocapsa sp. Trichoderma, and Thrustochytrids used as bioadsorbent for the removal of cadmium in the artificial sewage. Among the three species the maximum adsorption recorded in Gloeocapsa sp. biomass. For the augmentation of cadmium removal in sewage, adsorption process conditions was statistically optimized by the method of response surface methodology (RSM) and adsorption kinetics also studied. The important factors of temperature, pH, adsorbent dosage and processing time were selected for optimization, and it was done with 30 experimental cycles derived from centre composite design (CCD). The statistical optimization reveled that optimized condition for cadmium removal was pH 9, temperature 40ºC, adsorbent dosage 0.6 mg.l-1 and 60 minutes. Finally in this condition was experimentally proved with yield of cadmium removal of 92.9 % under statistically optimized condition. In the case of the adsorption kinetic Gloeocapsa sp. biomass showed a significant adsorption capacity of qmax-56.96 (mg.g-1). The present study concluded that the microbial dried biomass derived from marine Gloeocapsa sp. was a potent source for the removal of the cadmium in the sewage waste water

    Similar works