Electrochemical Conversion of the Lignin Model Veratryl Alcohol to Veratryl Aldehyde Using Manganese(III)-Schiff Base Homogeneous Catalysts

Abstract

Lignin and other colored structures need to be bleached after the Kraft process in the pulp industry. Development of environmentally-safe bleaching catalysts or electrocatalysts constitutes an attractive strategy for selective removal of lignin. Seven manganese(III)-complexes with Schiff base ligands 1–7 were synthetized and characterized by different analytical and spectroscopic techniques. The tetragonally elongated octahedral geometry for the manganese coordination sphere and the global µ-aquo dimeric structure were revealed by X-ray diffraction (XRD) studies for 1, Mn2L12(H2O)2(N(CN)2)2 (N(CN)2 = dicyanamide). Complexes 1–4 behave as more efficient peroxidase mimics as compared to 5–7. Electrochemical oxidation of the lignin model veratrylalcohol (VA) to veratrylaldehyde (VAH) is efficiently catalyzed by a type of dimanganese(III) complexes in a chlorine-free medium. The electrocatalytic reaction proceeds through the oxidation of chloride into hypochlorite at alkaline pH along with the formation of hydrogen from water as a subproductThis research was funded by Xunta de Galicia (GRC GI-1584-ED431C2018/13 Suprabioin Research Group, and MetalBIO Network ED431D 2017/01)S

    Similar works