research

On groups covered by locally nilpotent subgroups

Abstract

Let N be the class of pronilpotent groups, or the class of locally nilpotent profinite groups, or the class of strongly locally nilpotent profinite groups. It is proved that a profinite group G is finite-by-N if and only if G is covered by countably many N-subgroups. The commutator subgroup G\ue2\u80\ub2is finite-by-N if and only if the set of all commutators in G is covered by countably many N-subgroups. Here, a group is strongly locally nilpotent if it generates a locally nilpotent variety of groups. According to Zelmanov, a locally nilpotent group is strongly locally nilpotent if and only if it is n-Engel for some positive n

    Similar works