research

Experimental Study on Impedance Control for the Five-Finger Dexterous Robot Hand DLR-HIT II

Abstract

This paper presents experimental results on the five-finger dexterous robot hand DLR-HIT II, with Cartesian impedance control based on joint torque and nonlinearity compensation for elastic dexterous robot joints. To improve the performence of the impedance controller, system parameter estimations with extended kalman filter and gravity compensation have been investigated on the robot hand. Experimental results show that, for the harmonic drive robot hand with joint toruqe feedback, accurate position tracking and stable torque/force response can be achieved with cartesian and joint impedance controller. In addition, a FPGA-based control architecture with flexible communication is proposed to perform the designed impedance controller

    Similar works