CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Microstructure, texture and mechanical behavior characterization of hot forged cast ZK60 magnesium alloy
Authors
Seyed Behzad Behravesh
Hamid Jahed
+3 more
S.M.H. Karparvarfard
Sugrib K. Shaha
Bruce W. Williams
Publication date
14 April 2017
Publisher
'Elsevier BV'
Doi
Cite
Abstract
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.jmst.2017.04.004 © 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Uniaxial tension and compression tests were conducted to investigate the quasi-static performance of ZK60 Mg alloy in cast, followed by forging at optimum temperature of 450°C and a ram speed of 39mmmin-1. Microstructure and texture analysis showed that the as-cast alloy exhibited a dendritic structure with casting porosity and random texture. In contrast, the forged alloy exhibited a refined grain structure with a significant reduction in casting porosity, while the texture changed to sharp basal texture. Measured mechanical properties of the forged alloy showed that strength did not change, however, ductility improved by 75%. The analysis of the fracture surface of the forged alloy under tension revealed a ductile fracture with dimple morphology, while the as-cast alloy displayed a brittle fracture with open pores. This demonstrated that the reduction of casting defects and dendritic morphology, as well as the evolution of recrystallized grains, enhanced ductility, while partial dynamic recrystallization through the forging process resulted in only marginal modification of strength in the forged condition
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
University of Waterloo's Institutional Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:uwspace.uwaterloo.ca:10012...
Last time updated on 01/01/2018