[Abstract]: Generalized nonlinear phase diffusion equation describes oscillators weakly coupled by diffusion. The equation generally contains infinite number of terms and allows a variety of dynamic balances between them. We consider a truncated version of the equation in which nonlinear excitation drives the dynamics. A group of active systems leading to this truncation is modelled by reaction-diffusion equations with effective nonlocal coupling. We formulate the conditions on the parameters resulting in the truncation and discuss numerical experiments showing complex spatio-temporal behaviour