Predictive control for hydrogen production by electrolysis in an offshore platform using renewable energies

Abstract

An Energy Management System (EMS), based on Model Predictive Control (MPC) ideas, is proposed here to balance the consumption of power by a set of electrolysis units in an offshore platform. In order to produce renewable hydrogen, the power is locally generated by wind turbines and wave energy converters and fully used by the electrolyzers. The energy generated at the platform by wind and wave is balanced by regulating the operating point of each electrolysis unit and its connections or disconnections, using an MPC based on a Mixed-Integer-Quadratic-Programming algorithm. This Predictive Control algorithm makes it possible to take into account predictions of available power and power consumption, to improve the balance and reduce the number of connections and disconnections of the devices. Two case studies are carried out on different installations composed of wave and wind energies feeding a set of alkaline electrolyzers. Validation using measured data at the target location of the platforms shows the adequate operation of the proposed EMS

    Similar works