CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Silencing of Hsp90 chaperone expression protects against 6-hydroxydopamine toxicity in PC12 cells
Authors
B. Alani
E. Arefian
+6 more
H. Digaleh
M.G. Hakemi
F. Khodagholi
P. Sadeghi
R. Salehi
M. Zare
Publication date
1 January 2014
Publisher
Abstract
Parkinson's disease (PD) is the second most common age-related neurodegenerative disorder that has been shown to be associated with oxidative stress. This phenomenon occurs primarily via generation of 6-hydroxydopamine (6-OHDA) in catecholaminergic neurons leading to activation of apoptosis. The 90-kDa heat shock protein (Hsp90) functions as a chaperone in maintaining the functional stability and viability of cells under a transforming pressure. Since Hsp90 binds to inactive transcription factor heat shock factor-1 (HSF-1), inhibition of Hsp90 could activate HSF-1 and transcription of heat shock element containing genes subsequently, like Hsp70 as an anti-apoptotic factor. Our trial of silencing Hsp90 expression through transfection of Hsp90 siRNAs into neuronal PC12 cells being exposed to 6-OHDA resulted in the inhibition of pro-apoptotic factors, Bax, caspase-3, and PARP and upregulation of anti-apoptotic factor, Bcl2. In this manner, our data suggest a protective role for Hsp70 as it was observed to be induced upon Hsp90 knockdown. Furthermore, our results showed that Hsp90 silencing against 6-OHDA-induced oxidative stress may associate with upregulation of nuclear factor-erythroid 2-related factor 2. In summary, we found that silencing of Hsp90 expression leads to induction of cytoprotective pathways which can protect neurons against apoptosis in a PD model. © 2013 Springer Science+Business Media New York
Similar works
Full text
Available Versions
kashan university of medical sciences
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.kaums.ac.ir:421
Last time updated on 30/12/2017