In this thesis I report on experiments that enter a new regime in
the many body physics of ultracold atomic gases. A Bose-Einstein
condensate is loaded into a three-dimensional optical lattice
potential formed by a standing wave laser light field. In this
novel quantum system we have been able to both realize a quantum
phase transition from a superfluid to a Mott insulator, and to
observe the collapse and revival of a macroscopic matter wave
field.
Quantum phase transitions are driven by quantum fluctuations and
occur, even at zero temperature, as the relative strength of two
competing energy terms in the underlying Hamiltonian is varied
across a critical value. In the first part of this work I report
on the observation of such a quantum phase transition in a
Bose-Einstein condensate with repulsive interactions, held in a
three-dimensional optical lattice potential. In the superfluid
ground state, each atom is spread-out over the entire lattice,
whereas in the Mott insulating state, exact numbers of atoms are
localized at individual lattice sites. We observed the reversible
transition between those states and detected the gap in the
excitation spectrum of the Mott insulator.
A Bose-Einstein condensate is usually described by a macroscopic
matter wave field. However, a quantized field underlies such a
"classical" matter wave field of a Bose-Einstein condensate. The
striking behavior of ultracold matter due to the field
quantization and the nonlinear interactions between the atoms is
the focus of the second part of this work. The matter wave field
of a Bose-Einstein condensate is observed to undergo a series of
collapses and revivals as time evolves. Furthermore, we show that
the collisions between individual pairs of atoms lead to a fully
coherent collisional phase shift in the corresponding
many-particle state, which is a crucial cornerstone of proposed
novel quantum computation schemes with neutral atoms.
With these experiments we enter a new field of physics with
ultracold quantum gases. In this strongly correlated regime,
interactions between atoms dominate the behavior of the many-body
system such that it can no longer be described by the usual
theories for weakly interacting Bose gases. This novel quantum
system offers the unique possibility to experimentally address
fundamental questions of modern solid state physics, atomic
physics, quantum optics, and quantum information.In dieser Promotionsarbeit werden Experimente vorgestellt, in
denen es gelungen ist, in ein neues Regime der Vielteilchenphysik
eines atomaren Quantengases vorzudringen. Ein
Bose-Einstein-Kondensat wird in ein dreidimensionales optisches
Gitterpotential geladen, das durch interferierende Laserstrahlen
gebildet wird. Mit diesem neuartigen Quantensystem konnte ein
Quanten-Phasenübergang zwischen einer Superflüssigkeit und einem
Mott Isolator realisiert und das Kollabieren und Wiederaufleben
eines makroskopischen Materiewellenfeldes beobachtet werden.
Quanten-Phasenübergänge werden durch Quantenfluktuationen
getrieben und können daher selbst am absoluten Temperaturnullpunkt
auftreten, an dem alle thermischen Fluktuationen ausgefroren sind.
Im ersten Teil dieser Arbeit berichte ich über die Beobachtung
eines solchen Quanten-Phasenübergangs in einem Bose-Einstein
Kondensat mit repulsiver Wechselwirkung, das in einem
dreidimensionalen optischen Gitterpotential gespeichert ist. Im
superfluiden Grundzustand ist jedes Atom über das gesamte Gitter
delokalisiert. Im Mott Isolator Zustand hingegen ist auf jedem
Gitterplatz eine konstante Zahl von Atomen lokalisiert. Wir
konnten den reversiblen Übergang zwischen diesen beiden Zuständen
beobachten und die Lücke im Anregungsspektrum des Mott Isolators
nachweisen.
Ein Bose-Einstein Kondensat wird üblicherweise durch ein
makroskopisches Materiewellenfeld beschrieben. Diesem
"klassischen" Feld liegt bei genauerer Betrachtung jedoch ein
quantisiertes Materiewellenfeld zu Grunde. Thema des zweiten Teils
dieser Arbeit ist die erstaunliche Dynamik, die ultrakalte Materie
aufgrund dieser Quantisierung und der nichtlinearen Wechselwirkung
der Atome erfährt. Im Experiment konnten wir ein periodisches
Kollabieren und Wiederaufleben des makroskopischen
Materiewellenfeldes beobachten. Wir konnten zeigen, daß die
Kollisionen zwischen jeweils zwei Atomen lediglich zu einer völlig
kohärenten Kollisionsphase im jeweiligen Vielteilchenzustand
führen. Die kohärente Kollisionphase ist eine wesentliche
Grundlage für verschiedene Vorschläge zur Realisierung eines
Quantencomputers.
Mit diesen Experimenten ist es gelungen, in ein neues Gebiet der
Physik der ultrakalten Quantengase vorzudringen. Das stark
korrelierte System wird durch die Wechselwirkung zwischen den
Atomen dominiert und kann daher nicht mehr durch die gängigen
Theorien des schwach wechselwirkenden Bosegases beschrieben
werden. Durch dieses neuartige Quantensystem eröffnet sich die
einzigartige Möglichkeit, in einem ultrakalten atomaren Gas
fundamentale Fragen der modernen Festkörperphysik, Atomphysik,
Quantenoptik und Quanteninformation zu studieren