1. Development and establishment of the high-pressure high-temperature synthesis
as a broad approach to nitridophosphates. In this thesis for the first time a broad
access to nitridophosphates was developed and therefore the basis for a systematic
investigation of this class of compounds was established. It was shown, that under high-pressure
conditions (> 3 GPa) using a belt or Walker module crystalline
nitridophosphates can be obtained by reaction of phosphorus(V) nitride with alkaline or
earth alkaline azides at temperatures of 1200-1600 °C. Thus the possibilty to suppress
eliminiation of N2 from nitridophosphates, which occurs at 800 °C under atmospheric
pressure, was proved by use of high-pressure conditions. Thereby the maximum
temperature in synthesis of nitridophosphates was approximately doubled. A raise of the
maximum temperature during the synthesis leads to much better crystallization
conditions. Hence the main problem in synthesis of crystalline nitridophosphates, which
consists of bad crystallisation conditions due to limited maximum reaction temperature,
was solved and the number of the crystallographically well characterized ternary
phosphorus(V) nitrides was doubled from nine to eighteen. Especially the number of
highly condensed nitridophosphates (molar ratio P : N > 1 : 2) could be raised from three
to nine and a second modification of the binary phosphorus(V) nitride P3N5 was obtained.
Consequently the high-pressure high-temperature synthesis can be seen as the first
widely applicable approach to nitridophosphates. Due to the hermetically sealed reaction
cell precise modulation of the P-N framework by systematic variation of the P3N5 : azide
molar ratio in the starting materials. Moreover under high-pressure conditions the
reaction time was reduced dramatically compared to conventional synthesis. While using
conventional methods several hours or days are needed for quantitative reactions,
reactions under high pressure conditions succeed in 5-15 min.
At the beginning of the work the apparatus for the high-pressure experiments did not
exist within the laboratory equipment of our research group. The success of the first
experiments (synthesis of NaP4N7, KP4N7, RbP4N7, CsP4N7), which were performed in
cooperation with Evers, significantly contributed to the aquisition of the 1000 t-press
installed by Huppertz, and the introduction of the multianvil high-pressure technique at
the University of Munich (LMU).
2. NaP4N7, KP4N7, RbP4N7, and CsP4N7. The nitridophosphates NaP4N7, KP4N7, RbP4N7,
and CsP4N7 were synthesized by reaction of P3N5 with the respective alkaline azide in the
molar ratio MN3 : P3N5 = 3 : 4 (M = Na, K, Rb, Cs) at approximately 40 kbar and 1300 °C
using a belt module. NaP4N7 (C2/c, a = 1233.45(4), b = 852.30(3), c = 513.97(1) pm, b = 102.572(2)°, Z = 4, Rp = 0.0772, wRp = 0.1077, RF = 0.0718) crystallizes isotypic to
CaAl4O7 in a three-dimensional network structure of corner-sharing PN4 tetrahedra with
Na + ions in the channels. According to the formula ¥
3
[(P [4]
4 N 5
[2]
N 2
[3]
) - ] N [2] - and N [3] -bridges
exist in a molar ratio 5 : 2. KP4N7 (Pnma, a = 1222.72(2), b = 984.25(2),
c = 466.24(1) pm, Z = 4, Rp = 0.0865, wRp = 0.1113, RF = 0.0821), RbP4N7
(a = 1231.07(2), b = 989.46(1), c = 468.44(1) pm, Z = 4, Rp = 0.0350, wRp = 0.0462,
RF = 0.0589), and CsP4N7 (a = 1242.91(3), b = 997.63(3), c = 471.33(2) pm, Z = 4,
Rp = 0.0524, wRp = 0.0646, RF = 0.0494) crystallize isotypic to the mineral barylite
BaBe2Si2O7 in a three-dimensional network structure from corner-sharing PN4 tetrahedra
with the alkaline ions in the channels. According to the formula ¥
3
[(P [4]
4 N 5
[2]
N 2
[3]
) - ] N [2] -
and N [3] -bridges exist in a molar ratio 5 : 2. Using the obtained crystallographic data of
MP4N7 (M = Na, K, Rb, Cs) MAPLE and CHARDI calculations as well as calculations
based on the bond-length bond-strength concept were carried out and discussed. The
radiographically obtained results were confirmed. The compounds were characterized by
IR- and 31 P-MAS NMR-spectroscopy (d = -23.5, -25.0 (NaP4N7); -0.4, -1.7 (KP4N7), -19.6,
-28.2 (RbP4N7), -21.6, -31.9 ppm (CsP4N7)). Thermogravimetric examinations under inert
gas conditions revealed the thermal decomposition temperature of the compounds, which
is about 850-900 °C.
3. Rb3P6N11 and Cs3P6N11. The nitridophosphates Rb3P6N11 and Cs3P6N11 were
synthesized by reaction of P3N5 with the respective alkaline azide in the molar ratio
MN3 : P3N5 = 3 : 2 (M = Rb, Cs) using a Walker module at approximately 35 kbar and
1300 °C. Rb3P6N11 (P4132, a = 1049.74(1) pm, Z = 4, Rp = 0.0979, wRp = 0.1077,
RF = 0.0612) and Cs3P6N11 (P4132, a = 1065.15(1) pm, Rp = 0.0487, wRp = 0.0618,
RF = 0.0812) crystallize isotypic to K3P6N11 in a three-dimensional network structure of
corner-sharing PN4 tetrahedra with the alkaline ions in the channels. According to the
formula ¥
3
[(P 6
[4]
N 9
[2]
N 2
[3]
) 3- ] N [2] - and N [3] -bridges exist in the molar ratio 9 : 2. Using the
obtained crystallographic data of M3P6N11 (M = Rb, Cs) MAPLE and CHARDI calculations
as well as calculations based on the bond-length bond-strength concept were carried out
and discussed. The radiographically obtained results were confirmed. The compounds
were characterized by IR- and 31 P-MAS NMR-spectroscopy (d = -7.4 (Rb3P6N11), -8.9
ppm (Cs3P6N11)). Thermogravimetric examinations under inert gas conditions revealed
the thermal decomposition temperature of the compounds, which is about 850-900 °C.
Temperature-dependant powder X-ray investigations revealed that Rb3P6N11 shows no
thermal expansion between room temperature and 540 °C.4. NaPN2. The nitridophosphate NaPN2 was synthesized by reaction of P3N5 with NaN3 in
the molar ratio NaN3 : P3N5 = 3 : 1 using a Walker module at approximately 35 kbar and
1300 °C. NaPN2 (I 4 2d, a = 497.21(2), c = 697.60(3) pm, Z = 4, Rp = 0.0502,
wRp = 0.0649, RF = 0.0788) crystallizes isotypic to LiPN2 in a three-dimensional network
structure of corner-sharing PN4 tetrahedra with the Na + ions in the channels. According to
the formula ¥
3
[(P
[4]
N 2
[2]
) - ] N [2] -bridges exist exclusively. Using the obtained
crystallographic data of NaPN2, MAPLE and CHARDI calculations as well as calculations
based on the bond-length bond-strength concept were carried out and discussed. The
radiographically obtained results were confirmed. The compound was characterized by
IR- and 31 P-MAS NMR-spectroscopy (d = -15.0 ppm). Thermogravimetric examinations
under inert gas conditions revealed the thermal decomposition temperature of the
compound, which is about 900 °C.
5. CaP2N4 and SrP2N4. The nitridophosphates CaP2N4 und SrP2N4 were obtained by
reaction of Ca(N3)2 and Sr(N3)2 with P3N5 (molar ratio M(N3)2 : P3N5 = 3 : 2) at 35 kbar
and 1300 °C in a Walker module. A structure model could be obtained from X-ray powder
data. CaP2N4 (P6322, a = 972.11(1) pm, c = 785.90(1) pm, Z = 8, Rp = 0.059,
wRp = 0.079, RF = 0.174) and SrP2N4 (P6322, a = 987.44(1), c = 785.90(1) pm, Z = 8,
Rp = 0.075, wRp = 0.098, RF = 0.115) crystallize isotypic in a network structure from
corner-sharing PN4 tetrahedra with the alkaline earth ions within the channels.
Perpendicular to [001] layers from condensed P6N6 sechser rings exists which are linked
by P4N4 vierer rings and further P6N6 sechser rings forming the network structure.
According to the formula ¥
3
[(P
[4]
N 2
[2]
) - ] N [2] -bridges occur exclusively. Using the obtained
crystallographic data of CaP2N4 and SrP2N4, MAPLE and CHARDI calculations as well as
calculations based on the bond-length bond-strength concept were carried out and
discussed. The radiographically obtained results were confirmed. The compounds were
characterized by IR- and 31 P-MAS NMR-spectroscopy (d = -20.0, -15.9, -5.2, -3.6, -
2.6 (CaP2N4), -27.8, -23.4, -17.1, -15.5, -14.1 ppm (SrP2N4). Thermogravimetric
examinations under inert gas conditions revealed the thermal decomposition temperature
of SrP2N4, which is about 900 °C. CaP2N4 was stable up to 1000 °C.
6. g-P3N5. The synthesis of g-P3N5 was successfully carried out at 110 kbar and 1500 °C. In
contrast to a-P3N5, which is exclusively build up from PN4 tetrahedera, g-P3N5 forms a
three-dimensional network structure from PN4 tetrahedra and tetragonal PN5 pyramids.
The tetragonal PN5 pyramid is a formerly unknown structural building unit. In the crystal-
structure of g-P3N5 (Imm2, a = 1287.20(5), b = 261.312(6), c = 440.04(2) pm, Z = 2,
Rp = 0.073, wRp = 0.094, RF = 0.048) rods of trans edge-sharing PN5 pyramids are condensed via vertice forming layers. These layers are linked by chains of corner-sharing
tetrahedra. According to the formula ¥
3
[P ] 4 [
1 P ] 5 [
2 N ] 2 [
1 N ] 3 [
4 ] N [2] and N [3] bridges occur in the
molar ratio 1 : 4. Using the obtained crystallographic data of g-P3N5, MAPLE and CHARDI
calculations as well as calculations based on the bond-length bond-strength concept
were carried out and discussed. The radiographically obtained results were confirmed.
The compound was characterized by IR- and 31 P-MAS NMR-spectroscopy (d = -11.9,
-101.7 ppm). Thermogravimetric examinations under inert gas conditions revealed the
thermal decomposition temperature of the compound, which is about 900 °C. The Vickers
hardness was determined with a value of 9.7 GPa.
7. Hexaaminodiphosphazenium-bromide, -nitrate, and -toluenesulfonate. It was
shown, that the hexaaminodiphosphazenium-salts [(NH2)3PNP(NH2)3]Br,
[(NH2)3PNP(NH2)3] [NO3], and [(NH2)3PNP(NH2)3][CH3C6H4SO3] are accessible by anion
exchange in water using [(NH2)3PNP(NH2)3]Cl as starting material. The structures of
these compounds were obtained from single crystals, which were obtained from an
acetonitrile solution in a temperature gradient ([(NH2)3PNP(NH2)3]Br: P 1 , a = 596.2(1),
b = 744.5(1), c = 1114.4(1) pm, a = 108.78(1), b = 104.18(1), g = 90.64(1)°, R1 = 0.048,
wR2 = 0.104; [(NH2)3PNP(NH2)3][NO3]: P 1 , a = 550.9(1), b = 796.3(1), c = 1115.7(1) pm,
a = 94.45(1), b = 99.55(1), g = 101.53(1)°, R1 = 0.033, wR2 = 0.095;
[(NH2)3PNP(NH2)3][CH3C6H4SO3]: P21/c, a = 804.1(1), b = 596.1(1), c = 3218.7(3) pm,
b = 94.59(1)°, R1 = 0.052, wR2 = 0.136). The compounds crystallize in structures with
discrete [(NH2)3PNP(NH2)3]
+ -ions and the corresponding anions. [(NH2)3PNP(NH2)3]Br is
isotypic to [(NH2)3PNP(NH2)3]Cl. Between the ions many hydrogen bonds exist. In
[(NH2)3PNP(NH2)3]Br the [(NH2)3PNP(NH2)3]
+ -ion occurs in a staggered conformation,
while in [(NH2)3PNP(NH2)3][NO3] an ecliptic conformation is preferred. In
[(NH2)3PNP(NH2)3][CH3C6H4SO3] the gauche-conformation exists. It was shown by
Extended Hückel calculations, that no significant rotation barriers exist between the
conformations. The compounds were characterized by IR and 31 P NMR-spectroscopy
(d = -15.0 ppm). The thermal behaviour of the compounds was examined by
thermogravimetry.1. Entwicklung und Etablierung der Hochdruck-Hochtemperatur-Synthese als breiten
Zugang zu Nitridophosphaten. Im Rahmen der Dissertation gelang es erstmals, ein
breit anwendbares Synthesekonzept zur Darstellung von Nitridophosphaten zu
entwickeln und so die Grundlage zur systematischen Erschließung dieser
Substanzklasse zu legen. Es konnte gezeigt werden, daß unter Hochdruck-Bedingungen
(> 3 GPa) bei Verwendung eines Belt- oder Walker-Moduls kristalline Alkali- und
Erdalkali-nitridophosphate durch Umsetzung des binären Phosphor(V)-nitrids P3N5 mit
Alkali- und Erdalkaliaziden bei Temperaturen von 1200 °C bis ca. 1600 °C darstellbar
sind. Dadurch wurde bewiesen, daß bei Synthesen unter Hochdruck die thermische
Zersetzung durch irreversible Abspaltung von N2 aus Nitridophosphaten, welche bei
Normaldruck bereits bei ca. 800 °C stattfindet, unterdrückt werden kann. Es gelang somit
durch Anwendung von Hochdruck, die maximale Synthesetemperatur ungefähr zu
verdoppeln. Dies hat deutlich verbesserte Kristallisationsbedingungen zu Folge. Das
Hauptproblem bei konventionellen Synthesen von Nitridophosphaten, nämlich ungünstige
Kristallisationsbedingungen infolge limitierter Synthesetemperatur, konnte somit beseitigt
und infolgedessen die Zahl der bekannten kristallographisch eindeutig charakterisierten
ternären Phosphor(V)-nitride von neun auf achtzehn verdoppelt werden. Insbesondere
wurde die Zahl der bekannten hochkondensierten Nitridophosphate (molares Verhältnis
P : N > 1 : 2) von drei auf neun erhöht sowie eine neue Modifikation des binären
Phosphor(V)-nitrids P3N5 erhalten. Daher kann das im Rahmen der Dissertation
entwickelte Hochdruck-Hochtemperatur-Synthesekonzept als das erste breit anwendbare
Verfahren zur Darstellung von Nitridophosphaten angesehen werden. Es erlaubt
aufgrund der hermetischen Abgeschlossenheit des Reaktionsraums zudem das genaue
Einstellen des Kondensationsgrades im P-N-Gerüst des Nitridophosphates durch
systematische Variation des molaren Verhältnisses von P3N5 und dem jeweiligen Azid im
Eduktgemenge. Weiterhin wurde gezeigt, daß unter den beschriebenen Hochdruck-Hochtemperaturbedingungen
die Reaktionszeiten gegenüber konventionellen
Synthesemethoden drastisch verkürzt werden können. Während konventionelle
Nitridophosphat-Synthesen eine Reaktionszeit von mehreren Stunden bis Tagen
benötigen, verlaufen die Umsetzungen unter Hochdruckbedingungen bereits bei
Reaktionszeiten von 5-15 min quantitativ.
Die für die Hochdrucksynthesen erforderlichen Apparaturen standen am Anfang der
Dissertation innerhalb des Arbeitskreises nicht zur Verfügung. Der Erfolg der ersten
Synthesen (NaP4N7, KP4N7, RbP4N7, CsP4N7), welche in Zusammenarbeit mit Evers
durchgeführt wurden, trugen wesentlich zur Anschaffung der 1000 t-Hochdruckpresse, deren Aufbau durch Huppertz erfolgte, und zur Einführung der Multianvil-Hochdrucktechnik
an der LMU München bei.
2. NaP4N7, KP4N7, RbP4N7 und CsP4N7. Die Nitridophosphate NaP4N7, KP4N7, RbP4N7 und
CsP4N7 wurden durch Umsetzung des jeweiligen Alkaliazids mit P3N5 im molaren
Verhältnis MN3 : P3N5 = 3 : 4 (M = Na, K, Rb, Cs) in einem Belt-Modul bei ca. 40 kbar und
1300 °C synthetisiert. NaP4N7 (C2/c, a = 1233,45(4), b = 852,30(3), c = 513,97(1) pm,
b = 102,572(2)°, Z = 4, Rp = 0,0772, wRp = 0,1077, RF = 0,0718) kristallisiert isotyp zu
CaAl4O7 in einer dreidimensionalen Gerüststruktur aus eckenverknüpften PN4-Tetraedern.
Gemäß ¥
3
[(P [4]
4 N 5
[2]
N 2
[3]
) - ] existieren sowohl N [2] - als auch N [3] -Brücken im
molaren Verhältnis 5 : 2. Die Na + -Ionen befinden sich in den Kanälen des P-N-Gerüstes.
KP4N7 (Pnma, a = 1222,72(2), b = 984,25(2), c = 466,24(1) pm, Z = 4, Rp = 0,0865,
wRp = 0,1113, RF = 0,0821), RbP4N7 (a = 1231,07(2), b = 989,46(1), c = 468,44(1) pm,
Z = 4, Rp = 0,0350, wRp = 0,0462, RF = 0,0589) und CsP4N7 (a = 1242,91(3),
b = 997,63(3), c = 471,33(2) pm, Z = 4, Rp = 0,0524, wRp = 0,0646, RF = 0,0494)
kristallisieren isotyp zum Mineral Barylith BaBe2Si2O7 in einer Raumnetzstruktur aus
eckenverknüpften PN4-Tetraedern. Gemäß ¥
3
[(P [4]
4 N 5
[2]
N 2
[3]
) - ] existieren sowohl N [2] als
auch N [3] -Brücken im molaren Verhältnis 5 : 2. In den Kanälen der P-N-Gerüste befinden
sich die jeweiligen Alkali-Ionen. Anhand der kristallographischen Daten wurden an MP4N7
(M = Na, K, Rb, Cs) kristallchemische Rechnungen mit dem MAPLE- und CHARDI-
Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-
Konzepts durchgeführt und diskutiert. Dabei wurden die röntgenographisch ermittelten
Strukturen bestätigt. Die Verbindungen wurden IR-spektroskopisch sowie 31 P-MAS-NMR-
spektroskopisch (d = -23,5, -25,0 (NaP4N7); -0,4, -1,7 (KP4N7), -19,6, -28,2 (RbP4N7),
-21,6, -31,9 ppm (CsP4N7)) charakterisiert. Mit thermogravimetrischen Untersuchungen
unter Inertgasbedingungen wurde der thermische Zersetzungspunkt der Verbindungen
ermittelt, welcher jeweils bei ca. 850-900 °C liegt.
3. Rb3P6N11 und Cs3P6N11. Die Nitridophosphate Rb3P6N11 und Cs3P6N11 wurden durch
Umsetzung des jeweiligen Alkaliazids mit P3N5 im molaren Verhältnis MN3 : P3N5 = 3 : 2
(M = Rb, Cs) bei 35 kbar und 1300 °C in einem Walker-Modul dargestellt. Rb3P6N11
(P4132, a = 1049,74(1) pm, Z = 4, Rp = 0,0979, wRp = 0,1077, RF = 0,0612) und Cs3P6N11
(P4132, a = 1065,15(1) pm, Rp = 0,0487, wRp = 0,0618, RF = 0,0812) kristallisieren isotyp
zu K3P6N11 in einer Raumnetzstruktur aus eckenverknüpften PN4-Tetraedern, in dessen
Hohlräumen sich die Alkali-Ionen befinden. Gemäß ¥
3
[(P 6
[4]
N 9
[2]
N 2
[3]
) 3- ] existieren N [2] - und
N [3] -Brücken im molaren Verhältnis 9 : 2. Anhand der kristallographischen Daten wurden
an M3P6N11 (M = Rb, Cs) kristallchemische Rechnungen mit dem MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-Konzepts
durchgeführt und diskutiert. Dabei wurden die röntgenographisch ermittelten
Strukturen bestätigt. Die Verbindungen wurden IR-spektroskopisch sowie 31 P-MAS-NMR-spektroskopisch
(d = -7,4 (Rb3P6N11), -8,9 ppm (Cs3P6N11)) charakterisiert. Mit
thermogravimetrischen Untersuchungen unter Inertgasbedingungen wurde der
thermische Zersetzungspunkt der Verbindungen ermittelt, welcher jeweils bei ca. 850-900
°C liegt. Temperaturabhängige pulverdiffraktometrische Untersuchungen zeigten,
daß sich die Verbindung Rb3P6N11 zwischen Raumtemperatur und 540 °C praktisch nicht
thermisch ausdehnt.
4. NaPN2. Das Nitridophosphat NaPN2 wurde durch Umsetzung von NaN3 mit P3N5 im
molaren Verhältnis NaN3 : P3N5 = 3 : 1 bei 35 kbar und 1000 °C in einem Walker-Modul
dargestellt. NaPN2 (I 4 2d, a = 497,21(2), c = 697,60(3) pm, Z = 4, Rp = 0,0502,
wRp = 0,0649, RF = 0,0788) kristallisiert isotyp zu LiPN2 in einer Raumnetzstruktur aus
eckenverknüpften PN4-Tetraedern, in dessen Kanälen sich die Na + -Ionen befinden.
Gemäß ¥
3
[(P
[4]
N 2
[2]
) - ] existieren ausschließlich N [2] -Brücken. Anhand der
kristallographischen Daten wurden an NaPN2 kristallchemische Rechnungen mit dem
MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-
Konzepts durchgeführt und diskutiert. Dabei wurde die
röntgenographisch ermittelte Struktur bestätigt. Die Verbindung wurde IR-spektroskopisch
sowie 31 P-MAS-NMR-spektroskopisch (d = -15,0 ppm) charakterisiert.
Mit thermogravimetrischen Untersuchungen unter Inertgasbedingungen wurde der
thermische Zersetzungspunkt ermittelt, welcher bei ca. 900 °C liegt.
5. CaP2N4 und SrP2N4. Die Nitridophosphate CaP2N4 und SrP2N4 wurden durch Umsetzung
von Ca(N3)2 bzw. Sr(N3)2 mit P3N5 im molaren Verhältnis M(N3)2 : P3N5 = 3 : 2 bei 35 kbar
und 1300 °C in einem Walker-Modul dargestellt. Aus röntgenographischen
Untersuchungen an Pulvern von CaP2N4 und SrP2N4 konnte ein Strukturmodell erhalten
werden. CaP2N4 (P6322, a = 972,11(1), c = 785,90(1) pm, Z = 8, Rp = 0,059, wRp = 0,079,
RF = 0,174) und SrP2N4 (P6322, a = 987,44(1), c = 819,48(1) pm, Z = 8, Rp = 0,075,
wRp = 0,096, RF = 0,115) kristallisieren isotyp in einer Raumnetzstruktur aus
eckenverknüpften PN4-Tetraedern, in dessen Kanälen sich die Erdalkali-Ionen befinden.
Dabei sind senkrecht [001] verlaufende Schichten kondensierter P6N6-Sechserringe über
P4N4-Viererringe sowie weitere P6N6-Sechserringe zum dreidimensionalen P-N-Gerüst
verknüpft. Gemäß ¥
3
[(P
[4]
N 2
[2]
) - ] existieren ausschließlich N [2] -Brücken. Anhand der
kristallographischen Daten wurden an CaP2N4 und SrP2N4 kristallchemische Rechnungen
mit dem MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-Konzepts durchgeführt und diskutiert. Dabei wurden
die röntgenographisch ermittelten Strukturen weitgehend bestätigt. Die Verbindungen
wurden IR-spektroskopisch sowie 31 P-MAS-NMR-spektroskopisch (d = -20,0, -15,9, -5,2,
-3,6, -2,6 (CaP2N4), -27,8, -23,4, -17,1, -15,5, -14,1 ppm (SrP2N4) charakterisiert. Die
thermogravimetrischen Untersuchungen unter Inertgasbedingungen ergaben einen
thermischen Zersetzungspunkt von SrP2N4 bei ca. 900 °C, während sich CaP2N4 bis
1000 °C als stabil erwies.
6. g-P3N5. Bei 110 kbar und 1500 °C gelang die Darstellung von g-P3N5, einer
Hochdruckmodifikation von a-P3N5. Im Gegensatz zu a-P3N5, welches ausschließlich aus
PN4-Tetraedern aufgebaut ist, bildet g-P3N5 eine dreidimensionale Raumnetzstruktur
sowohl aus PN4-Tetraedern als auch aus tetragonalen PN5-Pyramiden. Das
Strukturelement der tetragonalen PN5-Pyramide war bislang unbekannt. In der
Kristallstruktur von g-P3N5 (Imm2, a = 1287,20(5), b = 261,312(6), c = 440,04(2) pm,
Z = 2, Rp = 0,073, wRp = 0,094, RF = 0,048) sind Stäbe trans-kantenverknüpfer PN5-Pyramiden
zu Schichten verknüpft. Diese sind wiederum über Ketten eckenverknüpfter
PN4-Tetraeder zur Gesamtstruktur verknüpft. Gemäß ¥
3
[P ] 4 [
1 P ] 5 [
2 N ] 2 [
1 N ] 3 [
4 ] existieren
sowohl N [2] als auch N [3] -Brücken im molaren Verhältnis 1 : 4. Anhand der
kristallographischen Daten wurden an g-P3N5 kristallchemische Rechnungen mit dem
MAPLE- und CHARDI-Konzept sowie Berechnungen auf der Basis des Bindungslängen-Bindungsstärken-
Konzepts durchgeführt und diskutiert. Dabei wurde die
röntgenographisch ermittelte Struktur bestätigt. Die Verbindung wurde IR-spektroskopisch
sowie 31 P-MAS-NMR-spektroskopisch (d = -11,9, -101,7 ppm)
charakterisiert. Mit thermogravimetrischen Untersuchungen unter Inertgasbedingungen
wurde der thermische Zersetzungspunkt ermittelt, welcher bei ca. 900 °C liegt. Die
Messung der Vickers-Härte von g-P3N5 ergab einen Wert von 9,7 GPa.
7. Hexaaminodiphosphazenium-bromid, -nitrat und -toluolsulfonat. Es konnte gezeigt
werden, daß die Hexaaminodiphosphazenium-Salze [(NH2)3PNP(NH2)3]Br,
[(NH2)3PNP(NH2)3]NO3 und [(NH2)3PNP(NH2)3][CH3C6H4SO3] ausgehend von
[(NH2)3PNP(NH2)3]Cl durch Anionenaustausch in wässriger Lösung dargestellt werden
können. Die Strukturen dieser Verbindungen konnten anhand von Einkristallen, welche
aus Acetonitril im Temperaturgradienten gezüchtet wurden, ermittelt werden
([(NH2)3PNP(NH2)3]Br: P 1 , a = 596,2(1)