Electron-Impact Ionization of P-like Ions forming Si-like Ions

Abstract

We have calculated electron-impact ionization (EII) for P-like systems from P to Zn15 + forming Si-like ions. The work was performed using the flexible atomic code (FAC) which is based on a distorted-wave approximation. All 3ℓ → nℓ' (n = 3-35) excitation-autoionization (EA) channels near the 3p direct ionization threshold and 2ℓ → nℓ' (n = 3-10) EA channels at the higher energies are included. Close attention has been paid to the detailed branching ratios. Our calculated total EII cross sections are compared both with previous FAC calculations, which omitted many of these EA channels, and with the available experimental results. Moreover, for Fe11 +, we find that part of the remaining discrepancies between our calculations and recent measurements can be accounted for by the inclusion of the resonant excitation double autoionization process. Lastly, at the temperatures where each ion is predicted to peak in abundances in collisional ionization equilibrium, the Maxwellian rate coefficients derived from our calculations differ by 50%-7% from the previous FAC rate coefficients, with the difference decreasing with increasing charge

    Similar works