Recommended Thermal Rate Coefficients for the C + H3+ Reaction and Some Astrochemical Implications

Abstract

We incorporate our experimentally derived thermal rate coefficients for C + H3+{{\rm{H}}}_{3}^{+} forming CH+ and CH2 + into a commonly used astrochemical model. We find that the Arrhenius–Kooij equation typically used in chemical models does not accurately fit our data and instead we use a more versatile fitting formula. At a temperature of 10 K and a density of 104 cm−3, we find no significant differences in the predicted chemical abundances, but at higher temperatures of 50, 100, and 300 K we find up to factor of 2 changes. In addition, we find that the relatively small error on our thermal rate coefficients, ~15%, significantly reduces the uncertainties on the predicted abundances compared to those obtained using the currently implemented Langevin rate coefficient with its estimated factor of 2 uncertainty

    Similar works