Electrodialytic recovery of tungsten and cobalt from an industrial residue – preliminary assessment

Abstract

Critical raw materials (CRMs) have a significant importance for key sectors in the European economy. This importance will continue to grow due to the Green Deal, as the sustainable transition to carbon neutrality by 2050 is settled in modern technologies and renewable energies, which are closely linked to a need for many raw materials. Europe is very highly dependent on imports of most of the raw materials needed by European industries, with a set of CRMs presenting a high level of concentration in particular countries, some of them geopolitically unstable. For this reason, the supply chains security depends largely on efficient management of resources throughout the lifecycle and the commitment to recycling using secondary resources, such as industrial residues. Investing in CRMs' recycling processes and their sustainability is essential to maintain the supply chains. The present work is the first attempt to study the application of the electrodialytic (ED) process for recovery of two CRMs, tungsten (W) and cobalt (Co), from tungsten carbide (WC-Co) scrap powder resultant from end-of-life cutting tools. ED process consists of the application of a low-level electric current, in the presence of cation and/or anion exchange membranes, which promote the separation between compartments. In this specific work, acid desorption of W and Co from the matrix was carried out, followed by electromigration and electrodialysis. Eight experiments were carried out during 24h, using ED cells with three (3C) and two (2C) compartments to perform three assessments: the best electrolyte, the best solid:liquid ratio, and the best current intensity. The WC-Co matrix was placed in the central cell compartment in the 3C setup and directly in the anode in a 2C cell. The results show that the 2C cell setup with NaCl 0.02 M as catholyte and citric acid 0.4 M as anolyte, a solid:liquid ratio 1:25, and an initial current intensity of 200 mA presented the highest W (2194 mg; 99.6% of total W solubilized) and Co (558 mg; 81.3% of total Co solubilized) recovery. However, the current intensity was not completely optimized yet and needs further investigation. This dissertation will contribute to guide future experimental work to optimize the ED conditions for W and Co recovery.As matérias-primas críticas (CRMs) possuem uma importância significativa para setores-chave da economia europeia. Essa importância vai continuar a aumentar com o Pacto Ecológico Europeu, uma vez que a transição sustentável para a neutralidade carbónica em 2050 está assente em tecnologias modernas e energias renováveis, intimamente ligadas a uma grande necessidade de um vasto número de matérias-primas. A Europa depende largamente das importações da maioria das matérias-primas necessárias às suas indústrias, materiais esses altamente concentrados num conjunto de países específicos, alguns deles geopoliticamente instáveis. Por esse motivo, a segurança das cadeias de abastecimento depende em grande parte da gestão eficiente dos recursos ao longo do seu ciclo de vida e do compromisso com a reciclagem, recorrendo a fontes secundárias como resíduos industriais. Investir nestes processos, bem como a garantir a sua sustentabilidade, é fundamental para assegurar a manutenção das cadeias de abastecimento. O presente trabalho consiste na primeira tentativa de estudar a aplicação do processo eletrodialítico (ED) para recuperação de duas matérias-primas críticas, tungsténio (W) e cobalto (Co), a partir de um pó de carbeto de tungsténio (WC-Co) macerado, resultante de ferramentas de corte em fim-de-vida. O processo ED consiste na aplicação de uma corrente elétrica de baixa intensidade, na presença de membranas de troca catiónica e/ou aniónica, que promovem a separação entre compartimentos. Neste trabalho específico, foi realizada uma dessorção ácida de W e Co da matriz sólida, seguida de eletromigração e eletrodiálise. Cada uma de oito experiências foi realizada durante 24h, utilizando células ED com três (3C) e dois (2C) compartimentos com três objetivos: obter o melhor eletrólito, o melhor rácio sólido:líquido e a melhor intensidade de corrente. A matriz de WC-Co foi colocada no compartimento central da célula 3C e diretamente no ânodo na célula 2C. Os resultados mostram que a configuração da célula 2C com NaCl 0.02 M como catolito e ácido cítrico 0.4 M como anolito, um rácio sólido:líquido de 1:25 e uma intensidade de corrente inicial de 200 mA apresentou a maior recuperação de W (2194 mg; 99.6% do total de W solubilizado) e Co (558 mg; 81.3% do total de Co solubilizado). No entanto, a intensidade da corrente ainda não foi completamente otimizada, necessitando de mais investigação. Esta dissertação contribuirá para futuros trabalhos experimentais com vista a otimizar as condições do processo ED para a recuperação de W e Co

    Similar works