Land Cover mapping based on Hierarchical Decision Trees

Abstract

The ability to monitor land cover changes can be very useful for resource management, urban planning, forest fire identification, among plenty of other applications. The topic of remote sensing has been studied for a long time, with many different solutions that typically use satellites or aircraft to obtain multi-spectral imagery and further analyse it. The entity responsible for monitoring land use and land cover in Portugal is Direção- Geral do Território (DGT) which periodically produces a document called Land Use and Land Cover Map (Carta de Uso e Ocupação do Solo (COS), in Portuguese). This document uses imagery with high spatial resolution of 0,25 m and has a minimum mapping unit of 1 ha, however, it is only produced every few years because it is manually curated by experts. This hinders the ability to closely monitor relevant land changes that occur more frequently or rapidly. In this dissertation, several classifiers were developed in a hierarchical manner to address some of COS drawbacks. The classifiers used were based on decision trees which were trained using satellite imagery collected from Sentinel-2 satellite constellation. Although having a lower spatial resolution than COS, they can automatically classify land cover in some minutes every time a new set of Sentinel-2 imagery is collected, in this case each 5 days. Cloud coverage might make some of these images unusable but nonetheless, the temporal resolution is still far greater than COS. However, automatic classification is not as accurate as manual classification. The produced classifiers did not consider as many classes as COS and had problems distinguishing some types of land cover, due to either poor sample size or spectral signature similarity. Considering Matthews Correlation Coefficient (MCC), water class had the best performance with an average of 91,28%, followed by forest and agriculture class with an average of 47,88% and 42,34%, respectively, and lastly urban areas and bare land class had the worse results averaging 28,03% and 20,53% respectively. Nevertheless, the results obtained were still considered to be good, but with considerable room for improvement.Acompanhar as mudanças de ocupação de solo tem bastante utilidade para uma correta gestão de recursos, deteção de fogos florestais, e inúmeras aplicações. O tema de deteção remota é estudado há vários anos e tipicamente são usadas imagens multiespectrais obtidas através de satélites e aeronaves que são depois analisadas em detalhe. A entidade responsável por esta monitorização em Portugal é a Direção-Geral do Território (DGT) que produz a Carta de Uso e Ocupação do Solo (COS), onde identifica o uso e ocupação de solo de Portugal continental. Este documento tem uma resolução espacial muito boa mas a sua resolução temporal é muito baixa, pois só é produzido em alguns anos visto ser feito de forma manual. Isto é prejudicial ao acompanhamento em detalhe das mudanças na ocupação de solo visto muita informação não ser registada. Nesta dissertação desenvolveram-se vários classificadores, distribuídos de forma hierárquica, para mitigar este problema. Foram usadas árvores de decisão treinadas com imagens recolhidas pela constelação Sentinel-2. Apesar destas imagens terem uma resolução espacial mais fraca, os classificadores conseguem classificar o solo de maneira automática apenas em alguns minutos cada vez que um novo conjunto de imagens é recolhido, neste caso a cada 5 dias. Nem todas as imagens podem ser usadas, devido às condições atmosféricas, mas continua a ter uma resolução temporal superior à COS. No entanto, esta classificação automática não é tão exata quanto a manual. Também não foram consideradas tantas classes quanto as presentes na COS e os classificadores tiveram dificuldade em diferenciar algumas delas, seja pela amostra ser muito pequena ou pelos valores espetrais serem demasiado semelhantes. Considerando o Matthews Correlation Coefficient (MCC), a classe “water” obteve os melhores resultados com uma média de 91,28%, seguida pelas classes “forest” e “agriculture” com uma média de 47,88% e 42,34%, respetivamente, e por último as classes “urban areas” e “bare land” com uma média de 28,03% e 20,53% respetivamente. Mesmo assim considera-se que os resultados obtidos são satisfatórios, mas com muitas oportunidades de melhoria

    Similar works