Upgrading decision support systems with Cloud-based environments and machine learning

Abstract

Business Intelligence (BI) is a process for analyzing raw data and displaying it in order to make it easier for business users to take the right decision at the right time. Inthe market we can find several BI platforms. One commonly used BI solution is calledMicroStrategy, which allows users to build and display reports.Machine Learning (ML) is a process of using algorithms to search for patterns in data which are used to predict and/or classify other data.In recent years, these two fields have been integrated into one another in order to try to complement the prediction side of BI to enable higher quality results for the client.The consulting company (CC) where I have worked on has several solutions related to Data & Analytics built on top of Micro Strategy. Those solutions were all demonstrable in a server installed on-premises. This server was also utilized to build proofs of concept(PoC) to be used as demos for other potential clients. CC also develops new PoCs for clients from the ground up, with the objective of show casing what is possible to display to the client in order to optimize business management.CC was using a local, out of date server to demo the PoCs to clients, which suffered from stability and reliability issues. To address these issues, the server has been migrated and set up in a cloud based solution using a Microsoft Azure-based Virtual Machine,where it now performs similar functions compared to its previous iteration. This move has made the server more reliable, as well as made developing new solutions easier forthe team and enabled a new kind of service (Analytics as a Service).My work at CC was focused on one main task: Migration of the demo server for CCsolutions (which included PoCs for testing purposes, one of which is a machine learning model to predict wind turbine failures). The migration was successful as previously stated and the prediction models, albeit with mostly negative results, demonstrated successfully the development of large PoCs.Business Intelligence (BI) é um processo para analizar dados não tratados e mostrá-los para ajudar gestores a fazer a decisão correcta no momento certo. No mercado, pode-se encontrar várias plataformas de BI. Uma solução de BI comum chama-se MicroStrategy,que permite com que os utilizadores construam e mostrem relatórios.Machine Learning (ML) é um processo de usar algoritmos para procurar padrões em dados que por sua vez são usados para prever e/ou classificar outros dados.Nos últimos anos, estes campos foram integrados um no outro para tentar complementar o lado predictivo de BI para possibilitar resultados de mais alta qualidade para o cliente.A empresa de consultoria (EC) onde trabalhei tem várias soluções relacionadas com Data e Analytics construídas com base no MicroStrategy. Essas soluções eram todas demonstráveis num servidor instalado no local. Este servidor também era usado para criar provas de conceito (PoC) para serem usadas como demos para outros potenciais clientes.A EC também desenvolve novas PoCs para clientes a partir do zero, com o objectivo de demonstrar ao cliente o que é possível mostrar para optimizar a gestão do negócio.A EC estava a utilizar um servidor local desactualizado para demonstrar os PoCs aos clientes, que tinha problemas de estabilidade e fiabilidade. Para resolver estes problemas,o servidor foi migrado e configurado numa solução baseada na cloud com o uso de uma Máquina Virtual baseada no Microsoft Azure, onde executa funções semelhantes à versão anterior. Esta migração tornou o servidor mais fiável, simplificou o processo de desenvolver novas soluções para a equipa e disponibilizou um novo tipo de serviço (Analytics as a Service).O meu trabalho na EC foi focado numa tarefas principal: Migração do servidor de demonstrações de soluções CC (que inclui PoCs para propósitos de testes, uma das quais é um modelo de aprendizagem de máquina para prever falhas em turbinas eólicas). A migração foi efectuada com sucesso (como mencionado previamente) e os modelos testados,apesar de terem maioritariamente resultados negativos, demonstraram com sucesso que é possível desenvolver PoCs de grande dimensão

    Similar works