Abstract

Castelli, M., Dondi, R., Manzoni, S., Mauri, G., & Zoppis, I. (2019). Top k 2-clubs in a network: A genetic algorithm. In J. J. Dongarra, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V. Krzhizhanovskaya, M. H. Lees, ... P. M. A. Sloot (Eds.), Computational Science. ICCS 2019: 19th International Conference, 2019, Proceedings (Vol. 5, pp. 656-663). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11540 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-22750-0_63The identification of cohesive communities (dense sub-graphs) is a typical task applied to the analysis of social and biological networks. Different definitions of communities have been adopted for particular occurrences. One of these, the 2-club (dense subgraphs with diameter value at most of length 2) has been revealed of interest for applications and theoretical studies. Unfortunately, the identification of 2-clubs is a computationally intractable problem, and the search of approximate solutions (at a reasonable time) is therefore fundamental in many practical areas. In this article, we present a genetic algorithm based heuristic to compute a collection of Top k 2-clubs, i.e., a set composed by the largest k 2-clubs which cover an input graph. In particular, we discuss some preliminary results for synthetic data obtained by sampling Erdös-Rényi random graphs.authorsversionpublishe

    Similar works