A Mobile Secure Bluetooth-Enabled Cryptographic Provider

Abstract

The use of digital X509v3 public key certificates, together with different standards for secure digital signatures are commonly adopted to establish authentication proofs between principals, applications and services. One of the robustness characteristics commonly associated with such mechanisms is the need of hardware-sealed cryptographic devices, such as Hardware-Security Modules (or HSMs), smart cards or hardware-enabled tokens or dongles. These devices support internal functions for management and storage of cryptographic keys, allowing the isolated execution of cryptographic operations, with the keys or related sensitive parameters never exposed. The portable devices most widely used are USB-tokens (or security dongles) and internal ships of smart cards (as it is also the case of citizen cards, banking cards or ticketing cards). More recently, a new generation of Bluetooth-enabled smart USB dongles appeared, also suitable to protect cryptographic operations and digital signatures for secure identity and payment applications. The common characteristic of such devices is to offer the required support to be used as secure cryptographic providers. Among the advantages of those portable cryptographic devices is also their portability and ubiquitous use, but, in consequence, they are also frequently forgotten or even lost. USB-enabled devices imply the need of readers, not always and not commonly available for generic smartphones or users working with computing devices. Also, wireless-devices can be specialized or require a development effort to be used as standard cryptographic providers. An alternative to mitigate such problems is the possible adoption of conventional Bluetooth-enabled smartphones, as ubiquitous cryptographic providers to be used, remotely, by client-side applications running in users’ devices, such as desktop or laptop computers. However, the use of smartphones for safe storage and management of private keys and sensitive parameters requires a careful analysis on the adversary model assumptions. The design options to implement a practical and secure smartphone-enabled cryptographic solution as a product, also requires the approach and the better use of the more interesting facilities provided by frameworks, programming environments and mobile operating systems services. In this dissertation we addressed the design, development and experimental evaluation of a secure mobile cryptographic provider, designed as a mobile service provided in a smartphone. The proposed solution is designed for Android-Based smartphones and supports on-demand Bluetooth-enabled cryptographic operations, including standard digital signatures. The addressed mobile cryptographic provider can be used by applications running on Windows-enabled computing devices, requesting digital signatures. The solution relies on the secure storage of private keys related to X509v3 public certificates and Android-based secure elements (SEs). With the materialized solution, an application running in a Windows computing device can request standard digital signatures of documents, transparently executed remotely by the smartphone regarded as a standard cryptographic provider

    Similar works