Exploring insect cells versatility for production of influenza virus-like particles

Abstract

A potential strategy to produce safer and broadly protective influenza vaccines is to co-express, in the same cell host, multiple hemagglutinins (HA) with a matrix protein (M1) which self-assemble in virus-like particles (VLPs). This study demonstrates the suitability of combining stable expression and the baculovirus-expression vector system (BEVs) in insect Hi5 cells for production of such multi-HA Influenza VLPs. Stable pools of Hi5 cells expressing two HAs were generated and later infected with a M1-encoding baculovirus at two cell concentrations (CCIs; 2×106 cells/mL and 3×106 cells/mL). The HA concentration in culture supernatant was followed over time, with more productive infections observed at higher CCIs. To extend the culture time, a re-feed strategy was implemented based on the identification of key nutrients which were exhausted during cell growth. Afterwards, supplemented cultures infected at a CCI of 4×106 cells/mL allowed a 4-fold increase in HA concentration, at harvest, when compared to cultures infected at a CCI of 2×106 cells/mL. The production of multi-HA influenza VLPs using the aforementioned strategy could be successfully scaled-up to 2L bioreactor cultures with even higher volumetric (1.5-fold) HA yields. To surpass the unpredictability of gene expression promoted by the random integration strategy mentioned above, the recombinase-mediated cassette exchange (RMCE) technology was explored. The feasibility of having two cassettes flanked by distinct pairs of flippase recognition target sites (FRTs) was evaluated. Unfortunately, significant cross-interaction was observed between the selected pairs. To circumvent this bottleneck, a backup strategy consisting in the co-expression of two genes from the same locus after implementation of one cassette system, in insect Sf9 cells, was attempted. However, the isolated clones showed low expression of both M1 and HA proteins. Ongoing work focuses on the isolation of clones tagged in high expression loci by fluorescence activated cell sorter technology. This work demonstrates how the versatility of insect cell expression technology can be explored to produce Influenza VLPs as vaccine candidates.A co-expressão de várias hemaglutininas (HA) e proteína da matriz (M1), no mesmo hospedeiro, formando partículas semelhantes a vírus (VLPs), constitui uma importante estratégia para desenvolver vacinas contra o vírus da gripe. Este trabalho mostra a combinação de uma linha celular estável de células de insecto com o sistema de expressão mediada por baculovírus para a produção deste tipo de VLPs. Foram estabelecidas duas populações de células de insecto Hi5, expressando duas HAs, posteriormente infectadas com um baculovírus contendo a proteína M1, a duas concentrações celulares diferentes (CCI; 2 e 3×106 cells/mL) sendo que a mais elevada demostrou ser a mais produtiva. De seguida, implementou-se uma estratégia baseada na adição de nutrientes específicos para prolongar o tempo de cultura. As culturas previamente suplementadas e infectadas a uma CCI de 4×106 células/mL produziram 4x mais HA comparativamente às culturas infectadas a uma CCI de 2×106 células/mL, não suplementadas. Esta estratégia foi também aplicada num biorreactor de 2L permitindo 1,5x mais produção, volumétrica, de HA comparativamente a experiências em pequena escala. De forma a ultrapassar a imprevisibilidade de uma integração aleatória, foi explorado o sistema de troca de cassete mediado por recombinase (RMCE). A viabilidade de um sistema com duas cassetes integradas flanqueadas por diferentes locais de reconhecimento (FRTs) foi avaliada, tendo sido observada a interação entre ambos os pares selecionados. Como segunda estratégia, foi implementado um sistema com uma cassete para co-expressão de dois genes em simultâneo, em células de insecto Sf9. Porém, os clones isolados mostram fraca expressão de M1 e HA, pelo que uma estratégia de isolamento de clones com expressão génica mais forte está em desenvolvimento utilizando uma tecnologia de sorteamento. Assim, este trabalho demonstra a versatilidade da tecnologia aplicada em células de insecto, que pode ser explorada para produzir VLPs multivalentes, com potencial para se tornar a próxima geração de vacinas para o vírus da gripe

    Similar works