Microfluidics: a new look at cell migration analysis

Abstract

This thesis explores the development and employment of microfluidic devices as a tool for studying the effect of the surrounding environment on embryonic stem cells during the migration phenomena. Different single-cell microchips were designed and manufactured to study mouse embryonic fibroblasts (MEFs) migration towards an environmental variation (increase of serum concentration in the culture medium) that was expected to function as a motility stimuli. Considering the experimental, cells were injected into the microchips chambers and individually isolated by dedicated cell traps with view to a single-cell analysis. Once fribroblasts were attached to the surface, culture medium with an increased serum level was subsequently injected in an adjacent chamber to promote the formation of a serum concentration gradient. The gradient established between the chambers could be sensed by the fibroblasts and thus triggered the cells mobilization towards and in the direction of the richer serum medium. Additionally, the experiment allowed the observation of MEFs’ structural reorganization when migrating through micro-tunnels containing widths below the cell size, suggesting a cytoskeleton rearrangement on account of the nutritional stimulus introduced. Furthermore, results indicate that fibronectin promotes MEFs adhesion to the substrate and that MEFs migration is characterized as haptotactic

    Similar works