Pre-treatment of different types of lignocellulosic biomass using ionic liquids

Abstract

Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau Mestre em BiotecnologiaThe pre-treatment of biomass by ionic liquid (IL) is a method opening new possibilities of biomass fractionation for further valorisation of low value feedstock. This work is dedicated to study on the pre-treatment and fractionation of different types of lignocellulosic biomass into its major constituent fractions (cellulose, hemicellulose and lignin), using ILs. The biomass tested was: wheat straw, sugarcane bagasse, rice straw and triticale. Initially, the optimised methods were development basing on two methodologies described in the literature. This method allows the separation into high purity carbohydrate-rich (cellulose and hemicellulose) and lignin-rich fractions and permits an efficient IL recovery. The possibility of IL reuse was confirmed, demonstrating the great potential of the established method. The pre-treatment of various biomasses confirms the versatility and efficiency of the optimised methodology since not only the complete macroscopic dissolution of each biomass was achieved but also the fractionation process was successfully performed. Pre-treatment of sugarcane bagasse and triticale allowed to obtained cellulose samples rich in carbohydrate up to 90 wt %. In order to verify the potential further applicability of the obtained carbohydrate-rich fractions, as well as to evaluate the pre-treatment efficiency, the cellulose-rich fraction resulting from 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) pre-treatment was subjected to enzymatic hydrolysis. Results showed a very high digestibility of the cellulose-rich samples and confirmed a high glucose yield for the optimised pre-treatment methodology. The samples obtained after the pre-treatment with ILs were qualitatively and quantitatively analysed by Fourier Transform Infrared Spectroscopy (FTIR). After the pre-treatment, the purity of the recovered ILs was evaluated through Nuclear Magnetic Resonance spectroscopy (NMR). The enzymatic hydrolysis results were analysed by High-Performance Liquid Chromatography(HPLC)

    Similar works