Dissertação para obtenção do Grau de Doutor em
BiologiaThis work concerns the investigation of the molecular mechanisms of sexual reproduction in fungi and their possible implication for fungal lifestyles (parasitic vs. saprobic) and for the emergence of asexual fungal lineages.
The association between pathogenicity and sexuality is well-known in the basidiomycete plant parasite Ustilago maydis (subphylum Ustilaginomycotina), an economically important smut fungus. However, Ustilago species are phylogenetically interspersed with species of the genus Pseudozyma, which are considered saprobic and asexual. In this work, a study focused on genes involved in determining sexual identity (mating type or MAT genes), showed that Pseudozyma prolifica retains full sexual competence and pathogenicity, being therefore indistinguishable from U. maydis. For other Pseudozyma species, molecular analyses of PRF1, a gene that encodes a master regulator of sexual reproduction in U. maydis, showed no substantial evidence of loss of sexual reproduction. However, some clues were also found suggesting that some Pseudozyma species may be evolving towards a saprobic lifestyle.
The earliest derived lineage of Basidiomycota (subphylum Pucciniomycotina) includes also important plant pathogens (rust and anther smut fungi) as well as lineages composed solely of saprobic organisms. Among the latter, the red yeasts of the order Sporidiobolales have the advantage of completing their life cycle in culture media, but have remained very little explored concerning the characterization of mating systems, the identification of MAT genes and the evolutionary relationships between sexual and asexual species. A comprehensive analysis of more than 200 strains belonging to 32 species of the Sporidiobolales indicated that asexuality seems to originate frequently from sexual lineages, but does not seem to persist long enough to form truly asexual species devoid of MAT genes. A more in-depth investigation of the red yeasts Rhodosporidium toruloides and Sporidiobolus salmonicolor allowed the identification for the first time in the Pucciniomycotina of the complete set of MAT genes. A detailed and multidisciplinary characterization of the mating system in the latter species yielded surprising results. A novel mating system that differs substantially from the two mating paradigms in basidiomycetes, the bipolar and tetrapolar systems, was brought to light. Given the basal phylogenetic position of the Pucciniomycotina within the Basidiomycota, this new system designated pseudo-bipolar, constitutes a significant contribution to the study of the evolution of MAT systems in fungi.Fundação para a Ciência e a Tecnologia - PhD grant(SFRH/BD/29580/2006