research

How does binocular rivalry emerge from cortical mechanisms of 3-D vision?

Abstract

AbstractUnder natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalry may occur, during which the brain consciously perceives alternating percepts through time. How do the same brain mechanisms that generate a single depthful percept of the world also cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocular rivalry data. The model proposes how mechanisms of cortical development, perceptual grouping, and figure-ground perception lead to single and rivalrous percepts. Quantitative model simulations of perceptual grouping circuits demonstrate influences of contrast changes that are synchronized with switches in the dominant eye percept, gamma distribution of dominant phase durations, piecemeal percepts, and coexistence of eye-based and stimulus-based rivalry. The model as a whole also qualitatively explains data about the involvement of multiple brain regions in rivalry, the effects of object attention on switching between superimposed transparent surfaces, monocular rivalry, Marroquin patterns, the spread of suppression during binocular rivalry, binocular summation, fusion of dichoptically presented orthogonal gratings, general suppression during binocular rivalry, and pattern rivalry. These data explanations follow from model brain mechanisms that assure non-rivalrous conscious percepts

    Similar works