A filtration of a representation whose successive quotients are isomorphic to
Demazure modules is called an excellent filtration. In this paper we study
graded multiplicities in excellent filtrations of fusion products for the
current algebra sl2​[t]. We give a combinatorial formula for the
polynomials encoding these multiplicities in terms of two dimensional lattice
paths. Corollaries to our main theorem include a combinatorial interpretation
of various objects such as the coeffficients of Ramanujan's fifth order mock
theta functions ϕ0​,ϕ1​,ψ0​,ψ1​, Kostka polynomials for hook
partitions and quotients of Chebyshev polynomials. We also get a combinatorial
interpretation of the graded multiplicities in a level one flag of a local Weyl
module associated to the simple Lie algebras of type Bn​ and G2​