research

A combinatorial formula for graded multiplicities in excellent filtrations

Abstract

A filtration of a representation whose successive quotients are isomorphic to Demazure modules is called an excellent filtration. In this paper we study graded multiplicities in excellent filtrations of fusion products for the current algebra sl2[t]\mathfrak{sl}_2[t]. We give a combinatorial formula for the polynomials encoding these multiplicities in terms of two dimensional lattice paths. Corollaries to our main theorem include a combinatorial interpretation of various objects such as the coeffficients of Ramanujan's fifth order mock theta functions ϕ0,ϕ1,ψ0,ψ1\phi_0, \phi_1, \psi_0, \psi_1, Kostka polynomials for hook partitions and quotients of Chebyshev polynomials. We also get a combinatorial interpretation of the graded multiplicities in a level one flag of a local Weyl module associated to the simple Lie algebras of type Bn and G2B_n \text{ and } G_2

    Similar works

    Full text

    thumbnail-image

    Available Versions