research

Geometrically stopped Markovian random growth processes and Pareto tails

Abstract

Many empirical studies document power law behavior in size distributions of economic interest such as cities, firms, income, and wealth. One mechanism for generating such behavior combines independent and identically distributed Gaussian additive shocks to log-size with a geometric age distribution. We generalize this mechanism by allowing the shocks to be non-Gaussian (but light-tailed) and dependent upon a Markov state variable. Our main results provide sharp bounds on tail probabilities, a simple equation determining Pareto exponents, and comparative statics. We present two applications: we show that (i) the tails of the wealth distribution in a heterogeneous-agent dynamic general equilibrium model with idiosyncratic investment risk are Paretian, and (ii) a random growth model for the population dynamics of Japanese municipalities is consistent with the observed Pareto exponent but only after allowing for Markovian dynamics

    Similar works

    Full text

    thumbnail-image

    Available Versions