Many empirical studies document power law behavior in size distributions of
economic interest such as cities, firms, income, and wealth. One mechanism for
generating such behavior combines independent and identically distributed
Gaussian additive shocks to log-size with a geometric age distribution. We
generalize this mechanism by allowing the shocks to be non-Gaussian (but
light-tailed) and dependent upon a Markov state variable. Our main results
provide sharp bounds on tail probabilities, a simple equation determining
Pareto exponents, and comparative statics. We present two applications: we show
that (i) the tails of the wealth distribution in a heterogeneous-agent dynamic
general equilibrium model with idiosyncratic investment risk are Paretian, and
(ii) a random growth model for the population dynamics of Japanese
municipalities is consistent with the observed Pareto exponent but only after
allowing for Markovian dynamics