Content distribution is an application in intelligent transportation system
to assist vehicles in acquiring information such as digital maps and
entertainment materials. In this paper, we consider content distribution from a
single roadside infrastructure unit to a group of vehicles passing by it. To
combat the short connection time and the lossy channel quality, the downloaded
contents need to be further shared among vehicles after the initial
broadcasting phase. To this end, we propose a joint infrastructure-to-vehicle
(I2V) and vehicle-to-vehicle (V2V) communication scheme based on batched sparse
(BATS) coding to minimize the traffic overhead and reduce the total
transmission delay. In the I2V phase, the roadside unit (RSU) encodes the
original large-size file into a number of batches in a rateless manner, each
containing a fixed number of coded packets, and sequentially broadcasts them
during the I2V connection time. In the V2V phase, vehicles perform the network
coded cooperative sharing by re-encoding the received packets. We propose a
utility-based distributed algorithm to efficiently schedule the V2V cooperative
transmissions, hence reducing the transmission delay. A closed-form expression
for the expected rank distribution of the proposed content distribution scheme
is derived, which is used to design the optimal BATS code. The performance of
the proposed content distribution scheme is evaluated by extensive simulations
that consider multi-lane road and realistic vehicular traffic settings, and
shown to significantly outperform the existing content distribution protocols.Comment: 12 pages and 9 figure