This paper investigates parallelization strategies for solving power flow
problems in both transmission and unbalanced, three-phase distribution systems
by developing a scalable power flow solver, ExaGridPF, which is compatible with
existing high-performance computing platforms. Newton-Raphson (NR) and
Newton-Krylov (NK) algorithms have been implemented to verify the performance
improvement over both standard IEEE test cases and synthesized grid topologies.
For three-phase, unbalanced system, we adapt the current injection method (CIM)
to model the power flow and utilize SuperLU to parallelize the computing load
across multiple threads. The experimental results indicate that more than 5
times speedup ratio can be achieved for synthesized large-scale transmission
topologies, and significant efficiency improvements are observed over existing
methods for the distribution networks