We propose a solution strategy for a multimaterial minimum compliance
topology optimization problem, which consists in finding the optimal allocation
of a finite number of candidate (possibly anisotropic) materials inside a
reference domain, with the aim of maximizing the stiffness of the body. As a
relevant and novel application we consider the optimization of self-assembled
structures obtained by means of diblock copolymers. Such polymers are a class
of self-assembling materials which spontaneously synthesize periodic
microstructures at the nanoscale, whose anisotropic features can be exploited
to build structures with optimal elastic response, resembling biological
tissues exhibiting microstructures, such as bones and wood. For this purpose we
present a new generalization of the classical Optimality Criteria algorithm to
encompass a wider class of problems, where multiple candidate materials are
considered, the orientation of the anisotropic materials is optimized, and the
elastic properties of the materials are assumed to depend on a scalar
parameter, which is optimized simultaneously to the material allocation and
orientation. Well-posedness of the optimization problem and well-definition of
the presented algorithm are narrowly treated and proved. The capabilities of
the proposed method are assessed through several numerical tests