The interaction between a rapidly oscillating atomic force microscope tip and
a soft material surface is described using both elastic and viscous forces with
a moving surface model. We derive the simplest form of this model, motivating
it as a way to capture the impact dynamics of the tip and sample with an
interaction consisting of two components: interfacial or surface force, and
bulk or volumetric force. Analytic solutions to the piece-wise linear model
identify characteristic time constants, providing a physical explanation of the
hysteresis observed in the measured dynamic force quadrature curves. Numerical
simulation is used to fit the model to experimental data and excellent
agreement is found with a variety of different samples. The model parameters
form a dimensionless impact-rheology factor, giving a quantitative physical
number to characterize a viscoelastic surface that does not depend on the tip
shape or cantilever frequency.Comment: 13 pages, 7 figure