research

Bidirectional Conditional Generative Adversarial Networks

Abstract

Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples (xx) conditioned on both latent variables (zz) and known auxiliary information (cc). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles zz and cc in the generation process and provides an encoder that learns inverse mappings from xx to both zz and cc, trained jointly with the generator and the discriminator. We present crucial techniques for training BiCoGANs, which involve an extrinsic factor loss along with an associated dynamically-tuned importance weight. As compared to other encoder-based cGANs, BiCoGANs encode cc more accurately, and utilize zz and cc more effectively and in a more disentangled way to generate samples.Comment: To appear in Proceedings of ACCV 201

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021