research

The role of initial geometry in experimental models of wound closing

Abstract

Wound healing assays are commonly used to study how populations of cells, initialised on a two-dimensional surface, act to close an artificial wound space. While real wounds have different shapes, standard wound healing assays often deal with just one simple wound shape, and it is unclear whether varying the wound shape might impact how we interpret results from these experiments. In this work, we describe a new kind of wound healing assay, called a sticker assay, that allows us to examine the role of wound shape in a series of wound healing assays performed with fibroblast cells. In particular, we show how to use the sticker assay to examine wound healing with square, circular and triangular shaped wounds. We take a standard approach and report measurements of the size of the wound as a function of time. This shows that the rate of wound closure depends on the initial wound shape. This result is interesting because the only aspect of the assay that we change is the initial wound shape, and the reason for the different rate of wound closure is unclear. To provide more insight into the experimental observations we describe our results quantitatively by calibrating a mathematical model, describing the relevant transport phenomena, to match our experimental data. Overall, our results suggest that the rates of cell motility and cell proliferation from different initial wound shapes are approximately the same, implying that the differences we observe in the wound closure rate are consistent with a fairly typical mathematical model of wound healing. Our results imply that parameter estimates obtained from an experiment performed with one particular wound shape could be used to describe an experiment performed with a different shape. This fundamental result is important because this assumption is often invoked, but never tested

    Similar works