Abstract

The original publication is available at www.springerlink.comThe ovarian follicle contains several different cell types and separate compartments and undergoes substantial development during its growth and maturation. Extracellular matrix (ECM) could be expected to play a major role in these processes. Most research on ECM in follicles has focused on the follicular basal lamina and its changing composition during folliculogenesis and on the specialised matrix formed at ovulation by the cumulus cells surrounding the oocyte and the zona pellucida. We review these aspects. Few naturally occurring gene mutations have identified unique roles for ECM molecules in follicular function. Presumably, any mutations leading to reduced fertility are eliminated quickly by natural selection and, when mutations are not eliminated, considerable redundancy occurs to ensure successful reproduction. In mice, in which the genome can be easily manipulated, the modification of matrix components associated with cumulus and oocytes has often resulted in partial infertility, suggesting redundancy. We provide an update of basal lamina components focusing on newer discoveries. In addition, we review matrix associated with the occyte and cumulus cells (excluding the zona pellucida) and other components of ECM. Where possible, we examine evidence for the role of the ECM in follicular development and diseases.Helen F. Irving-Rodgers and Raymond J. Rodger

    Similar works