research

Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities

Abstract

The synthesis, cytotoxicity, anti-leishmanial and anti-trypanosomal activities of twelve triclosan-caffeic acid hybrids are described herein. The structure of the synthesized products was elucidated by a com- bination of spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis , which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the pathogenic species to humans. Cytotoxicity was evaluated against hu- man U-937 macrophages. Eight compounds were active against L. (V) panamensis ( 18 e 23, 26 and 30 ) and eight of them against T. cruzi ( 19 e 22 , 24 and 28 e 30 ) with EC 50 values lower than 40 m M. Compounds 19 e 22 , 24 and 28 e 30 showed higher activities than benznidazole (BNZ). Esters 19 and 21 were the most active compounds for both L. (V) panamensis and T. cruzi with 3.82 and 11.65 m M and 8.25 and 8.69 m M, respectively. Compounds 19 e 22 , 24 and 28 e 30 showed higher activities than benznidazole (BNZ). Most of the compounds showed antiprotozoal activity and with exception of 18 , 26 and 28 , the remaining compounds were toxic for mammalian cells, yet they have potential to be considered as candidates for anti-trypanosomal and anti-leishmanial drug development. The activity is dependent on the length of the alkyl linker with compound 19 , bearing a four-carbon alkyl chain, the most performing hybrid. In general, hydroxyl groups increase both activity and cytotoxicity and the presence of the double bond in the side chain is not decisive for cytotoxicity and anti-protozoal activity

    Similar works