research

Pressure Field Visualisation on the Surface of a Square Cylinder with Pressure Sensitive Paints

Abstract

Pressure Sensitive Paints (PSP) are one of the breakthrough technologies for the measurement of aerodynamic sound from automobiles. Potential problems in applying Pressure Sensitive Paints to automobiles are low time resolution and less accuracy in the low-speed flow field. In this investigation, we attempted to improve the accuracy of PSP in a low-speed flow. A suction-type wind tunnel, which has a square test section of 75 mm by 150 mm, was developed to remove the influence of temperature differences during the wind tunnel experiments. A carefully selected array of ultraviolet LEDs was utilised as a lighting system to match the effective excitation wavelength of the developed PSP (390 nm). The surface pressure of a square cylinder was measured at velocities ranging from 35 m/s to 75 m/s with PSP and a conventional pressure sensor. The experimental data were compared with the results of conventional pressure measurements and numerical simulations. The experimental results showed that the accuracy of the PSP was about 10% at the velocities of 65 m/s or higher. The pressure profiles can be clearly observed at the uniform velocity of 75 m/s. Conversely, accuracy within the 35 m/s to 55 m/s velocity range was not high enough because of insufficient CCD camera resolution. Despite large error values, the colour depths of the luminescence images were almost identical for the same experimental conditions. This indicated that the calibration coefficients of the Stern-Volmer relation were almost constant during the experiments. It revealed that the suction-type wind tunnel is suitable for PSP measurements

    Similar works