Geoquímica, petrogênese e evolução estrutural dos granitóides arqueanos da região de Xinguara, SE do Cráton amazônico

Abstract

The Xinguara region is situated in the northern sector of the Rio Maria Granite-Greenstone Terrain (RMGGT), southeastern Amazonian craton. The RMGGT is composed by greenstone belts and diversified granitoid plutons. Granitoids and gneisses, formeriy included indistinctly in the Xingu Complex, have been individualized in two new stratigraphic units: The Caracol tonalitic complex (CTc), which shows enclaves of the greenstone belts and the Água Fria trondhjemite (THaf). The Iatter is intrusive in the Sapucaia greenstone belt and in the CTc, and coeval with the Xinguara granite (Gxg). Some granodioritic bodies exposed in the Xinguara region are correlated with the Rio Maria granodiorite (GDrm). They are younger than the CTc and older than the THaf and Gxg. The dominant regional structures follow a WNW-ESE trend, observed in the south portion of the CTc and also in the comparatively younger granitoid plutons. The CTc preserves a N-S banding in its NW sector, but this structure is transposed to the WNW-ESE regional trend. The GDrm shows strongly flattened mafic enclaves, which defines a foliation; The THaf displays a magmatic banding; The Gxg pluton has an elongated shape; ali these structures follow the regional trend. The Gxg displays a weak foliation, subhorizontal at the center and dipping at high angles along the borders of the intrusion. The G1 axis of the regional stress during the intrusion of the granitoids was horizontal and trending N40E. The regional stress remained active during the submagmatic stage of the CTc evolution, as indicated by the presence of folds or boudins affecting its banding. It was responsible by the transposition to WNW-ESE of N-S structures. The stress field orientation was similar during the two phases of the Archean evolution of the region. This is suggested by the main submagmatic to subsolidus deformation structures in the GDrm, THaf, and Gxg. The changing trends of the CTc foliation suggest that the CTc was formed by domic plutons, intruded and sectionated by the younger granitic intrusions. Al-in amphibole geobarometer data suggest that the GDrm crystallized under a lithostatic pressure of —3 kbar, equivalent to a —10 km depth. The contact metamorphic effects of the Rio Maria granodiorite in the metabasaltic rocks of the Identidade greenstone belt are coherent with this data and suggest also that its emplacement was not diapiric-controlled. The variation in the intensity and orientation of the foliation in the Xinguara pluton and the deformation imprinted on its country rocks suggest its emplacement by bailooning. The emplacement of the THaf was probably controlled by diapiric processes. The CTc is a typical TTG, similar to those of the Archean trondhjemite series. Two different geochemical signatures have been identified in this granitoid on the basis of accentuated contrasts in LaN/YbN ratios. The GDrm is different of the TTG series. It follows the calc-alkaline trend and is similar to the Mg-rich granodiorites of the Sanukite Series. The THaf is geochemically similar to the CTc and by extension to the Archean TTG, but it is comparatively enriched in K2O. The Gxg is a high-K2O, strongly fractionated, calc-alkaline Archean leucogranite. Its REE pattern is indicative of a crustal origin. The dominant, high LaN/YbN ratio CTc group crystallized from a liquid probably originated from the partial melting of garnet amphibolites derived from 'normal' tholeiites. The latter should be similar in composition to the Archean metabasalts or to the metabasalts from the Identidade greenstone belt and the degree of partial fusion required would be, respectively, 25-30% and 10-15. On the other hand, the tonalites with Iow LaN/YbN ratios crystallized from a liquid derived from a garnet-free similar source. Nd isotopic data indicate a mantle source and a juvenile character for the tonalites of the first group. A tonalite sample of the second group and an enclave in the Gxg yielded negative ONd values and >3.2 Ga TDM ages. These data suggest that the tonalites of this group could derive from an older source with a longer crustal residence time. The THaf may have been generated by 5-10% partial melting of garnet amphibolites derived from metabasalts, chemically similar to the metabasalts from Identidade. The liquids of the Gxg were originated by variable degrees of partial melting of a source similar to the oldest TTG granitoids. The Archean geologic evolution of the Xinguara region occurs in two stages. The first starts in the interval of 3,2 Ga, sugerindo participação de uma fonte mais antiga e com maior tempo de residência crustal. O THaf pode ter sido gerado a partir de 5 a 10% de fusão de metabasaltos de composição química similar aos de Identidade, transformados em granada-anfibolito. Os líquidos do Gxg tiveram origem a partir de diferentes graus de fusão de fonte de composição similar aos granitóides TTG mais antigos. A evolução geológica arqueana de Xinguara ocorreu em duas fases. A primeira deu-se no período de <2,95 a 2,91 Ga e revela analogias com a evolução dos crátons Pilbara (Autrália) e Dharwar (Índia). A segunda fase ocorreu a partir de 2,88 Ga, quando há fortes evidências de mudanças no comportamento da crosta. Neste estágio se daria o espessamento e estabilização da mesma, o que a tornaria mais rígida. A partir daí os processos de convergência e subducção de placas foram mais efetivos. Neste contexto, a fusão do manto enriquecido geraria o magma parental do GDrm. A fusão de granada-anfibolito da crosta oceânica subductante geraria o magma do THaf. A ascensão dos magmas do THaf e do GDrm forneceria calor para a fusão dos granitóides TTG da base da crosta e geração dos magmas graníticos do pluton Xinguara

    Similar works