CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Effects of variable resistance on smart structures of cubic reconnaissance satellites in various thermal and frequency shocking conditions
Authors
Zubair Butt
Hassan Elahi
+3 more
Marco Eugeni
Paolo Gaudenzi
Asif Israr
Publication date
1 January 2017
Publisher
'Springer Science and Business Media LLC'
Doi
Cite
Abstract
Piezoelectric materials are widely used as smart structures in cubic reconnaissance satellites because of their sensing, actuating, and energy-harvesting abilities. In this study, an analytical model is developed in specific mechanical thermal shocking conditions. A special circuit and apparatus is designed for experimentation on the basis of the inverse piezoelectric effect. An equivalent circuit method is used to establish the relationship between the resistance and peak-to-peak voltage of lead zirconate titanate used as smart materials for cubic reconnaissance satellites. Various frequencies and resistance were applied in different mechanical thermal shocking conditions. Moreover, numerical simulations are conducted in various mechanical loading conditions to determine the accumulative effect. The model provides a novel mechanism to characterize the smart structures in cubic reconnaissance satellites. A rise in temperature increases peak-to-peak voltage; a rise in frequency decreases peak-to-peak voltage; and intensified resistance decreases peak-to-peak voltage. Based on experimentation and simulation, the optimum resistance is predicted for the various frequencies and temperatures. The various conditions may correspond to the different applications of smart structures for cubic reconnaissance satellites. The analytical calculations are in good agreement with experimental and numerical calculations. © 2017, The Korean Society of Mechanical Engineers and Springer-Verlag GmbH Germany
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Archivio della ricerca- Università di Roma La Sapienza
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:iris.uniroma1.it:11573/101...
Last time updated on 29/11/2017
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1007%2Fs12206-017-...
Last time updated on 03/01/2020