Thermal gradients due to magma dynamics in active volcanic areas may affect the emanating
power of the substrate and the background level of radon signal. This is particularly effective
in subvolcanic substrates where intense hydrothermal alteration and/or weathering processes
generally form hydrous minerals, such as zeolites able to store and release great amounts of
H2O (up to ∼25 wt.%) at relative low temperatures. To better understand the role played by
thermally induced devolatilization reactions on the radon signal, a new experimental setup has
been developed for measuring in real time the radon emission from a zeolitized volcanic tuff.
Progressive dehydration phenomena with increasing temperature produce radon emissions two
orders of magnitude higher than those measured during rock deformation, microfracturing and
failure. In this framework, mineral devolatilization reactions can contribute significantly to
produce radon emissions spatially heterogeneous and non-stationary in time, resulting in a
transient state dictated by temperature gradients and the carrier effects of subsurface gases.
Results from these experiments can be extrapolated to the temporal and spatial scales of
magmatic processes, where the ascent of small magma batches from depth causes volatile
release due to dehydration phenomena that increase the radon signal from the degassing host
rock material