Multidisciplinary optimisation of an Unmanned Aerial Vehicle with a fuel cell powered energy system

Abstract

ALF/ENGAER 139425-J Bernardo Miguel Teixeira Alves. Examination Committee: Chairperson: COR/ENGAER Luís António Monteiro Pessanha; Supervisors: Prof. André Calado Marta, MAJ/ENGAER Luís Filipe da Silva Félix; Member of the Committee: Prof. Pedro Vieira GamboaPara explorar a utilização de células de combustível a hidrogénio como alternativa viável aos combustíveis nocivos em veículos aéreos não-tripulados, um conceito de UAV de classe I foi desenvolvido no Centro de Investigação da Força Aérea (CIAFA). Este trabalho foca-se nos estudos trade-off realizados durante a sua conceção e na subsequente otimização. Primeiro, uma abordagem de otimização multi-objetivo foi utilizada com o auxílio do algoritmo genético NSGA-II para balancear dois objetivos em conflito: peso reduzido; e elevada autonomia. Conclui-se que é possível voar mais de três horas com um peso máximo à descolagem de 21,6 kg, uma célula de hidrogénio de 800 W e 148 g de hidrogénio. Uma configuração mais pesada com maior potência nominal e mais combustível foi descartada devido a um constragimento na envergadura. Posteriormente, com um conceito que satisfaz os requisitos impostos, uma abordagem multi-disciplinar (MDO) foi utilizada para maximizar a autonomia. O software utilizado foi o OpenAeroStruct, método dos elementos finitos (FEM) e o método da malha de vórtices (VLM) para modelar superfícies sustentadoras. Inicialmente, uma condição de cruzeiro e de carga foram utilizadas com torção geométrica da asa como variável de projeto. Posteriormente, maior complexidade foi introduzida atrav´es da utilização de afilamento, corda e envergadura. Finalmente, uma terceira condição de voo foi introduzida com o intuito de garantir o requisito de perda. Com a utilização de MDO foi possível aumentar a autonomia em 21% satisfazendo todos os requisitos. Este trabalho marca um passo importante no desenvolvimento de um futuro protótipo no Centro de Investigação.To explore the use of hydrogen fuel cells as a feasible alternative to pollutant fuels on Unmanned Aerial Vehicles (UAVs), a class I concept was designed at the Portuguese Air Force Research Centre. This work focuses on the trade-off studies performed during its design and on the optimisation that followed. First, a multi-objective optimisation approach was used with the aid of the Algorithm NSGAII to balance between two conflicting objectives: low weight and high endurance. It was found that it is possible to fly for more than 3 hours with a Maximum Take-off Weight of 21.6 kg, an 800 W fuel cell and 148 g of hydrogen. A heavier configuration with more power and fuel was discarded due to a wingspan constraint. Later, after the concept satisfied the project requirements, Multi-Disciplinary Design Optimisation (MDO) was performed to achieve the maximum endurance possible. The software used was OpenAeroStruct, low fidelity Finite Element Analysis (FEA) and Vortex Lattice Method (VLM) to model lifting surfaces. Initially, a cruise and a load flight point were used with wing geometric twist only as design variable. After, more complexity was added by introducing taper, wing chord and span. Finally, a third flight point was introduced to ensure the stall requirements were satisfied. The use of MDO allowed a 21% increase in endurance with a smaller wing area. Other improvements could not be achieved without violation of the constraints. This work marks an important milestone in the development of a future prototype at the Research Centre.N/

    Similar works