slides

Coming Phase to Phase with Surfactants

Abstract

We introduce a fast cellular automata model for the simulation of surfactant dynamics based on a previous model by Ono and Ikegami (2001). Here, individual lipid-like particles undergo stochastic movement and rotation on a two-dimensional lattice in response to potential energy gradients. The particles are endowed with an internal structure that reflects their amphiphilic character. Their head groups are weakly repelled by water whereas their hydrophobic tails cannot be readily hydrated. This leads to the formation of a variety of structures when the particles are placed in solution. The model in its current form compels a myriad of potential self-organisation experiments. Heterogeneous boundary conditions, chemical interactions and an arbitrary diversity of particles can easily be modelled. Our main objective was to establish a computational platform for investigating how mechanisms of lipid homeostasis might evolve among populations of protocells

    Similar works