Nanoporous polymeric templates systems for the confined growth of epitaxial ferromagnetic complex oxides nanostructures.

Abstract

9-13 March 2015International audienceSelective synthesis for integrated nanomaterials with controllable morphology and composition represents an emerging research area in nanoscience and nanotechnology because the intrinsic properties behind nanostructures are generally phase-, shape-, and size- dependent. In this direction the present work shows the capabilities of nanoporous polymeric template systems directly supported on different substrates for the confined growth of epitaxial ferromagnetic complex oxides nanostructures (see figure1). In particular, we describe the versatility and potentiality of sol-gel precursor solutions combined with track-etched polymers to synthesize i) vertical polycrystalline La0.7Sr0.3MnO3 nanorods on top of single crystal perovskites [1,2], ii) single crystalline manganese based octahedral molecular sieves (OMS) nanowires on silicon substrates [3-5], and iii) the epitaxial directional growth of single crystal OMS nanowires when grown on top of fluorite-type substrates [6]. The influence of the distinct growth parameters on the nanostructural evolution of the resulting nanostructures and their magnetic properties are studied in detail. Therefore, we demonstrate that the combination of soft-chemistry and epitaxial growth opens new opportunities for the effective integration of novel technological functional complex oxides nanomaterials on different substrates. [1] A. Carretero-Genevrier et al. Chem.Soc.Rev., 43, 2042-2054 (2014) [2] A. Carretero-Genevrier et al. Adv.Funct.Mater., 20, 892-897. (2010). [3] A. Carretero-Genevrier et al. Chem.Mater., 26 (2), 1019–1028 (2014) [4] A. Carretero-Genevrier et al. JACS., 133 (11), 4053–4061 (2011) [5] J. Gazquez et al. M&M., 20 (03) 760-766 (2014) [6] A. Carretero-Genevrier et al. Chem.Comm., 48, 6223-6225 (2012

    Similar works