Flexibility management model of home appliances to support DSO requests in smart grids

Abstract

Several initiates have been taken promoting clean energy and the use of local flexibility towards a more sustainable and green economy. From a residential point of view, flexibility can be provided to operators using home-appliances with the ability to modify their consumption profiles. These actions are part of demand response programs and can be utilized to avoid problems, such as balancing/congestion, in distribution networks. In this paper, we propose a model for aggregators flexibility provision in distribution networks. The model takes advantage of load flexibility resources allowing the re-schedule of shifting/real-time home-appliances to provision a request from a distribution system operator (DSO) or a balance responsible party (BRP). Due to the complex nature of the problem, evolutionary computation is evoked and different algorithms are implemented for solving the formulation efficiently. A case study considering 20 residential houses equipped each with seven types of home-appliances is used to test and compare the performance of evolutionary algorithms solving the proposed model. Results show that the aggregator can fulfill a flexibility request from the DSO/BRP by re-scheduling the home-appliances loads for the next 24-h horizon while minimizing the costs associated with the remuneration given to end-users.The present work has been developed under the EUREKA – ITEA2 Project M2MGrids (ITEA-13011), Project SIMOCE (ANI—P2020 17690), and has received funding from FEDER Funds through COMPETE program and from National Funds through FCT under the project UIDB/00760/2020. Joao Soares is supported by FCT under CEECIND/02814/2017 grant.info:eu-repo/semantics/publishedVersio

    Similar works