Métodos de análise da complexidade no problema de empacotamento de paletes do distribuidor

Abstract

In the pallet loading problem, one of the main goals is to allocate the highest number of boxes as possible, to minimize empty spaces in the pallet. Those empty spaces are called trim-loss. If all boxes have a rectangular shape, which is the most common one, it is possible to pack them so that their faces are coincident with themselves. By doing that, the trim-loss can be minimized. Although loading a pallet may seem linear to most people, some customers impose restrictions that increase the complexity of the pallet loading. Due to that, to evaluate the complexity of a packed pallet, some metrics were created. They consist in an evaluation of a set of parameters that are inherent to the pallet loading process and affect its complexity. After analysing some of those constraints and loading methods enforced by some pickers in a real company, it was possible to obtain samples where the metrics were applied to learn which parameters add the most complexity in the pallet loading process. In the future, after knowing the relevancy of each parameter, the metrics can be used in pallet generation tools to learn how complex is the loading of a certain pallet and study new and easier ways to load the boxes that reduce the complexity of such process. Two statistical tests were then used to analyse the samples retrieved: the principal components analysis and the multiple linear regression. The first is used to combine multiple variables into a smaller set that represents the most relevant information, while the multiple linear regression uses the variables and respective observations to calculate a model that can predict the value of the complexity of a packed pallet in given circumstances. In the first one, it was learned that three principal components were extracted, but since the third one explained a small percentage of the total data variance, it was decided to retain only two components: the box quantities, which explains 41% of the total variance, followed by the box dimensions, explaining 28% of the total variance. The multiple linear regression revealed that the component representing the box quantities, which contains the Number of Box Types, Number of Column Piles, Number of Boxes, Time Spent Packing, and Percentage of Fragile Boxes variables is the component that mostly increase the complexity of pallet cargo arrangements. Although the model can predict the data that was obtained with an average accuracy, some of the coefficients ended up being small, those being related to the components Box Dimensions, which has the Number of Heavy Boxes, Average Box Weight, Average Maximum Width variables, and Height Between Pile and Worker and Number variables, meaning that they aren’t very significant towards evaluating the complexity of a pallet loading process. Using a multiple linear regression with the 9 variables showed that the variable who adds more complexity is the Number of Column Piles. Overall, the results obtained were acceptable, and showed that the variable that adds more complexity is the ones that the pickers see as adding more complexity, and also that the results of the multiple regression with the components match the one using the original variables. It is worth noting that this variable is subjective, meaning that one worker’s perception on the complexity may not match others’ perception. Despite having obtained only one variable being considered as statistically significant towards explaining the complexity in the pallet loading problem, it doesn’t mean it’s the only one that adds complexity.No problema de carregamento de paletes, um dos grandes objetivos é alocar o maior número de caixas possível, visando minimizar espaços vazios conhecidos por trim-loss. Se todas as caixas possuírem um formato retangular, que é o formato mais comum, é possível arrumá-las de forma que as suas faces fiquem encostadas entre si, minimizando assim o trim-loss. No entanto, apesar do empacotamento de caixas em paletes parecer linear para a maioria das pessoas, certos clientes impõem restrições que aumentam a complexidade do empacotamento. Como tal, para avaliar a complexidade de um arranjo de paletes, criaram-se métricas, que consistem na avaliação de um conjunto de parâmetros inerentes ao processo ou às características do carregamento de paletes que afetam a sua complexidade. Após analisar numa empresa real as restrições e os métodos de empacotamento usados pelos operadores, foi possível obter amostras onde as métricas são aplicadas para tentar saber quais as mais relevantes no processo, para assim futuramente estas métricas serem aplicadas em ferramentas de geração de paletes para poder analisar os resultados obtidos e estudar maneiras onde estas sejam carregadas mais facilmente. Posteriormente, dois testes estatísticos foram aplicados aos dados recolhidos: uma análise de componentes principais e a regressão linear múltipla. O primeiro usa-se para combinar várias variáveis e formar um conjunto mais pequeno que represente a informação mais relevante, enquanto a regressão linear múltipla usa as variáveis e respetivas observações para calcular um modelo que consiga prever valores de complexidade do carregamento de paletes em quaisquer circunstâncias. No primeiro, verificou-se a existência de três componentes principais, mas dado que o terceiro componente explica uma percentagem da variância total dos dados pequena, decidiu-se extrair apenas dois componentes: as quantidades das caixas é o componente que explica maiores valores de variância nos dados (41%), seguido pelas dimensões das caixas, explicando 28% da variância total dos dados. A regressão linear múltipla revelou que o componente que representa as quantidades das caixas, que contém as variáveis Número de Tipos de Caixa, Número de Colunas, Número de Caixas, Tempo Despendido a Carregar Caixas e Percentagem de Caixas Frágeis, é aquele que faz crescer mais substancialmente a complexidade do carregamento de caixas em paletes. Com os vários testes, verificou-se que os componentes Dimensões das Caixas, que possui as variáveis Número de Caixas Pesadas Carregadas, Peso Médio das Caixas, Largura Máxima Média, e a diferença de alturas entre pilhas de caixas e o operador, não acrescentam muita significância na explicação da avaliação da complexidade no problema de carregamento de paletes. A regressão linear múltipla com as variáveis originais mostrou que o Número de Colunas é a variável que adiciona mais complexidade. Apesar do modelo obtido ter significância, quase todos os coeficientes obtidos acabaram por ser baixos e com valores Significância (sig.) acima de 0,05, não sendo essas variáveis relevantes no modelo. Valores baixos de Cronbach’s Alpha e R2 ajustado evidenciam a suscetibilidade da aparição destes valores. No geral, os resultados obtidos nesta dissertação foram satisfatórios, mas os coeficientes baixos da regressão linear múltipla não foram bons. O número de observações retido e o escalamento das variáveis são causas possíveis para esta discrepância de valores ter acontecido. Vale a pena referir que a variável que avalia a complexidade é uma variável subjetiva, pelo que o que um picker considera como sendo complexo pode não corresponder ao que outros trabalhadores pensem. Apesar de, estatisticamente, apenas uma variável ter significância na explicação da complexidade, na realidade todas as variáveis têm alguma influência na complexidade do carregamento de caixas em paletes. No geral, a perceção dos trabalhadores tem semelhanças com aquilo que se obteve nos resultados das regressões lineares

    Similar works