Robot Localization in an Agricultural Environment

Abstract

Localization and Mapping of autonomous robots in an harsh and unstable environment such as a steep slope vineyard is a challenging research topic. The commonly used Dead Reckoning systems can fail due to the harsh conditions of the terrain and the accurate Global Position System can be considerably noisy or not always available. Agriculture is moving towards a precision agriculture, with advanced monitoring systems and wireless sensors networks. These systems and wireless sensors are installed in the crop field and can be considered relevant landmarks for robot localization using different types of technologies.In this work the performance of Pozyx, a low cost Time-of-flight system with Ultra-Wide Bandwidth (UWB) technology, is studied and implemented on a real robot range-based localization system. Firstly the error of both the range-only system and the embedded localization algorithm of the sensor is characterized. Then the range measurements are filtered with an EKF algorithm to output the robot pose and finally compared with the localization algorithm of the sensor.The obtained results are presented and compared with previous works showing an increased redundancy of the robot localization estimation. The UWB is proved to offer a good solution for a harsh environment as the agricultural one since its range-measurements are not much impacted by the atmospheric conditions. The discussion also allows to present formulations for better results of Beacons Mapping Procedure (BMP) required for accurate and reliable localization systems

    Similar works